20 years of aging in 6 days

Anything about distilling ya read in news.

Moderator: Site Moderator

User avatar
raketemensch
Site Donor
Site Donor
Posts: 2001
Joined: Sun Nov 09, 2014 2:10 pm
Location: Tralfamadore

Re: 20 years of aging in 6 days

Post by raketemensch »

I vote new thread, so it doesn't get buried behind what looks like a click-bait headline.
User avatar
Badmotivator
Angel's Share
Angel's Share
Posts: 937
Joined: Tue Jan 20, 2015 9:01 pm
Location: Oregon

Re: 20 years of aging in 6 days

Post by Badmotivator »

Bruce, it sounds like you've done some significant original research. I agree with the mensch, and I'd love to see your work standing on its own in a new thread. Thanks!
User avatar
thecroweater
retired
Posts: 6079
Joined: Wed Mar 14, 2012 9:04 am
Location: Central Highlands Vic. Australia

Re: 20 years of aging in 6 days

Post by thecroweater »

Look it really does depend on what you would deem to be a finished spirit. Aged 20 years in 6 days is a bit of a foolish claim that would be more at home in a child's storybook but for sure there are ways to accelerate aging and ways to rapidly flavour ( not the same thing btw ). I can explain how to turn white dog to tannin tea in under an hour and it may look like a twenty year old whiskey but sure as hell it ain't
Those who would give up essential Liberty, to purchase a little temporary Safety, deserve neither Liberty nor Safety. Benjamin Franklin
User avatar
S-Cackalacky
retired
Posts: 5990
Joined: Fri Feb 08, 2013 4:35 pm
Location: Virginia, USA

Re: 20 years of aging in 6 days

Post by S-Cackalacky »

Badmotivator wrote:Bruce, it sounds like you've done some significant original research. I agree with the mensch, and I'd love to see your work standing on its own in a new thread. Thanks!
+1, If you're going to document your own method, you should break it out of this fairly long thread and let it stand on it's own.
Every new member should read this before doing anything else:
User avatar
bearriver
Site Donor
Site Donor
Posts: 4442
Joined: Fri Nov 22, 2013 10:17 pm
Location: Western Washington

Re: 20 years of aging in 6 days

Post by bearriver »

Science has done it once again!!!

Link: http://homedistiller.org/forum/viewtopi ... =7&t=57456
User avatar
Brutal
Site Donor
Site Donor
Posts: 1349
Joined: Sat May 18, 2013 6:02 pm

Re: 20 years of aging in 6 days

Post by Brutal »

I agree on the new thread. I did not intend to offend anyone with that.
Steam injection rig http://tinyurl.com/kxmz8hy
All grain corn mash with steam injection and enzymes http://tinyurl.com/mp6zdt5
Inner tube condenser http://tinyurl.com/zkp3ps6
User avatar
kiwi Bruce
Distiller
Posts: 2324
Joined: Mon Apr 23, 2012 12:38 pm
Location: Transplanted Kiwi living in the States

Re: 20 years of aging in 6 days

Post by kiwi Bruce »

Started tonight......20 years in aging? for the hobby... Part 1
Getting hung up all day on smiles
MDH
Distiller
Posts: 1001
Joined: Tue Nov 29, 2011 4:33 pm
Location: Pacific Northwest

Re: 20 years of aging in 6 days

Post by MDH »

My understanding is that Bryan is heating the spirit to just below the temperature of ester hydrolysis, but the highest temperature possible before that to maximize spirit reaction rate. The reflux is pressure induced, forcing reactants back into the spirit so they do not escape the process.
The still is not a liar. Mash and ferment quality is 99.9% of your performance.
User avatar
NZChris
Master of Distillation
Posts: 13062
Joined: Tue Apr 23, 2013 2:42 am
Location: New Zealand

Re: 20 years of aging in 6 days

Post by NZChris »

Reading the patent application, I think the pressure is merely the result of heating the charge in a closed vessel, not a necessary part of the process. The reflux occuring above the liquid is the result of heat loss at the top of the vessel making it slightly cooler than the liquid. This will happen at any pressure.

My last test was new white dog UJSSM. Immediately after reacting, there was a difference to the control, but that seems to be disappearing.
MDH
Distiller
Posts: 1001
Joined: Tue Nov 29, 2011 4:33 pm
Location: Pacific Northwest

Re: 20 years of aging in 6 days

Post by MDH »

The pressure is to force reflux where it would not occur because reflux via cooling would slow the reaction rate down.
The still is not a liar. Mash and ferment quality is 99.9% of your performance.
User avatar
NZChris
Master of Distillation
Posts: 13062
Joined: Tue Apr 23, 2013 2:42 am
Location: New Zealand

Re: 20 years of aging in 6 days

Post by NZChris »

MDH wrote:The pressure is to force reflux where it would not occur because reflux via cooling would slow the reaction rate down.
How does pressure force reflux?
User avatar
SandyCrack
Novice
Posts: 27
Joined: Sun Nov 08, 2015 5:55 pm

Re: 20 years of aging in 6 days

Post by SandyCrack »

I have not been at this end of the pool for very long, but correct me if I am wrong.... But isn't the flavor imparted by the aldehydes, isoamyls, and acetals a necessary component of the flavor profile of ALL spirit drinks, with the notable exception of white devil raw alcohols, vodkas, and other such eeeeeeevil brew?

I learned very quickly that management of all of these compounds was the key to flavor management, in fact, I now save a half pint or so, of the heads and tails from every run to use as flavoring in other runs!
By themselves they taste like kissing betty the beautician after a 12 hour day at the salon, but diluted in the hearts, with other "flavorants", properly combined with oxygen, oak tannin, sugars, and time sweet time, have not failed to yield me some spectacular drink!

I guess I just have to ask myself why someone would want to "Hurry up" the natural process of aging?

For me, this hobby is more about the journey...... not to dust off old adages!
User avatar
kiwi Bruce
Distiller
Posts: 2324
Joined: Mon Apr 23, 2012 12:38 pm
Location: Transplanted Kiwi living in the States

Re: 20 years of aging in 6 days

Post by kiwi Bruce »

As some of us start to get a little long in the tooth here Sandy, and we would love to fool ourselves that we would still be here in twenty, thirty or even fifty years. Letting great kegs of our hobby age along with us. The truth is ...speed is everything, if we want to enjoy what we make, while we are still standing on the green side of the sod.
Getting hung up all day on smiles
User avatar
S-Cackalacky
retired
Posts: 5990
Joined: Fri Feb 08, 2013 4:35 pm
Location: Virginia, USA

Re: 20 years of aging in 6 days

Post by S-Cackalacky »

+1 KB. Well said. Many of these young sons ain't seein' the big neon mortality sign flashing just yet. I consider myself a good father, but I ain't looking to build a whiskey inheritance for the younguns.
Every new member should read this before doing anything else:
varocketry
Site Donor
Site Donor
Posts: 514
Joined: Fri Mar 22, 2013 5:15 pm
Location: somewhere not near Detroit

Re: 20 years of aging in 6 days

Post by varocketry »

http://pdfpiw.uspto.gov/.piw?docid=0706 ... %252Baging" onclick="window.open(this.href);return false;" rel="nofollow

United States Patent 7,063,867
Tyler, III , et al. June 20, 2006
Abstract
The present invention is directed to a process for rapidly aging alcoholic beverages and to the beverages produced by the process. During the process, a consumable alcoholic feedstock is contacted with ultrasonic energy at a power of at least about 3 Watts/liter. If desired, a variety of flavorants can also be contacted with the alcohol and ultrasonic energy in order to flavor the beverage. The energy can push the maturation chemistry of the alcohol to completion quickly and produce a consumable product which is unique in characterization and can have flavor and smoothness surpassing that of consumable alcohols aged in slower, more traditional processes.

What is claimed is:

1. A process for maturing alcoholic beverages comprising: providing a distilled consumable alcohol; and subjecting said consumable alcohol to ultrasonic energy at a power of at least 3 Watts/liter for at least one hour to accelerate chemical reactions in the consumable alcohol involved in maturation and flavor enhancement of said alcohol, wherein the temperature of the alcohol is maintained between 90.degree. F. and 150.degree. F. while the alcohol is being subjected to the ultrasonic energy during the process.

2. A process as defined in claim 1, wherein said distilled consumable alcohol is between about 20 proof and about 190 proof alcohol content.

3. A process as defined in claim 1, wherein said distilled consumable alcohol is between about 80 proof and about 150 proof alcohol content.

4. A process as defined in claim 1, wherein said alcohol is recirculated through a reaction vessel while being subjected to the ultrasonic energy.

5. A process as defined in claim 1, wherein the alcohol is subjected to ultrasonic energy at a power of at least about 5 Watts/liter.

6. A process as defined in claim 1, wherein the alcohol is subjected to ultrasonic energy at a power of between about 10 and about 80 Watts/liter.

7. A process as defined in claim 1, wherein said ultrasonic energy is at a frequency of greater than about 35,000 Hz.

8. A process as defined in claim 1, wherein said ultrasonic energy is at a frequency of between about 20,000 and about 170,000 Hz.

9. A process as defined in claim 1, further comprising combining said consumable alcohol with a purifying agent, said purifying agent being a material selected from the group consisting of activated carbon, diatomaceous earth, a filter, and mixtures thereof.

10. The process of claim 9, wherein the filter has an average pore diameter of less than about 5 .mu.m.

11. A process as defined in claim 1, wherein said consumable alcohol is subjected to the ultrasonic energy for between about 12 and about 36 hours.

12. The process of claim 1 further comprising contacting the consumable alcohol with at least one flavorant.

13. The process of claim 12, wherein said flavorant is a solid.

14. The process of claim 13, further comprising filtering said solid from said mixture following subjection of said alcohol to said ultrasonic energy.

15. The process of claim 14, further comprising subjecting the alcohol to additional ultrasonic energy after filtering the solid from the alcohol.

16. The process of claim 12, wherein said flavorant is an extract.

17. The process of claim 12, wherein said flavorant is selected from the group consisting of wood, seeds, fruitwoods, nuts, fruits, plants, vegetables, and mixtures thereof.

18. The process of claim 12, wherein the alcohol is contacted with the flavorant prior to subjecting the alcohol to ultrasonic energy.

19. The process of claim 12, wherein the alcohol is contacted with the flavorant after subjecting the alcohol to ultrasonic energy.

20. The process of claim 19, further comprising contacting the alcohol and flavorant mixture to additional ultrasonic energy.

21. The process of claim 20, wherein the mixture is subjected to the additional ultrasonic energy for a period of time of between about 2 hours and about 4 hours.

22. A process for maturing a grain alcohol comprising: providing a grain alcohol; combining the grain alcohol with a catalyst to form a mixture; and subjecting the mixture to ultrasonic energy at a power of at least 3 Watts/liter for at least one hour to accelerate chemical reactions involved in maturation and flavor enhancement in the grain alcohol, wherein the temperature of the mixture is maintained between 90.degree. F. and 150.degree. F. while the mixture is being subjected to the ultrasonic energy during the process.

23. A process as defined in claim 22, wherein the mixture is recirculated through a reaction vessel while being subjected to the ultrasonic energy.

24. A process as defined in claim 22, wherein the mixture is subjected to ultrasonic energy at a power of at least about 5 Watts/liter.

25. A process as defined in claim 22, wherein the mixture is subjected to ultrasonic energy at a power of between about 10 and about 80 Watts/liter.

26. A process as defined in claim 22, wherein the ultrasonic energy is at a frequency of greater than about 35,000 Hz.

27. A process as defined in claim 22, wherein the ultrasonic energy is at a frequency of between about 20,000 and about 170,000 Hz.

28. A process as defined in claim 22, wherein the mixture is subjected to the ultrasonic energy for between about 12 and about 36 hours.

29. A process as defined in claim 22, wherein the catalyst selected from the group consisting of sugars, esters, organic acids, wood extracts, and mixtures thereof.

30. A process for maturing alcoholic beverages comprising: providing a consumable alcohol feedstock between about 20 and about 190 proof; recirculating the alcohol through a reaction vessel; and subjecting the alcohol to ultrasonic energy while the alcohol is in the reaction vessel, the alcohol being subjected to ultrasonic energy in an amount of at least 3 Watts per liter for at least one hour, said ultrasonic energy being at a frequency of between about 35,000 Hz and about 170,000 Hz, wherein the temperature of the alcohol is maintained between 90.degree. F. and 150.degree. F. while the alcohol is being subjected to the ultrasonic energy during the process.

31. The process of claim 30, further comprising contacting the alcohol with a purifying agent selected from the group consisting of activated carbon, diatomaceous earth, a filter having an average pore diameter of less than about 5 .mu.m, and mixtures thereof.

32. The process of claim 30, wherein the temperature of the alcohol is maintained at a temperature of between 90.degree. F. and about 120.degree. F. while being subjected to the ultrasonic energy during the process.

33. The process of claim 30, wherein the alcohol is subjected to ultrasonic energy at a frequency of about 80,000 Hz.

34. The process of claim 30, wherein the alcohol is subjected to ultrasonic energy for between about 12 and about 36 hours.

35. The process of claim 30, wherein the alcohol is subjected to ultrasonic energy in an amount of between about 15 Watts/liter and about 40 Watts/liter.

36. The process of claim 30 further comprising contacting the consumable alcohol with at least one flavorant.

37. The process of claim 36, wherein said flavorant is a solid.

38. The process of claim 37, further comprising filtering said solid from said mixture following subjection of said alcohol to said ultrasonic energy.

39. The process of claim 38, further comprising subjecting the alcohol to additional ultrasonic energy after filtering the solid from the alcohol.

40. The process of claim 36, wherein said flavorant is an extract.

41. The process of claim 36, wherein said flavorant is selected from the group consisting of wood, seeds, fruitwoods, nuts, fruits, plants, vegetables, and mixtures thereof.

42. The process of claim 36, wherein the alcohol is contacted with the flavorant prior to subjecting the alcohol to ultrasonic energy.

43. The process of claim 36, wherein the alcohol is contacted with the flavorant after subjecting the alcohol to ultrasonic energy.

44. The process of claim 43, further comprising contacting the alcohol and flavorant mixture to additional ultrasonic energy.

45. The process of claim 44, wherein the mixture is subjected to the additional ultrasonic energy for a period of time of less than about 4 hours.
Description


FIELD OF THE INVENTION

The present invention is generally directed to a beverage product and to a process for producing beverages. More particularly, the present invention is directed to a process for flavoring and/or rapidly aging alcoholic beverages, such as distilled spirits, that results in a unique product that has improved smoothness, end depth of aroma and taste. In general, the process includes the step of subjecting a liquid, such as an extract or an alcoholic beverage, to ultrasonic energy and, in some embodiments, to various flavorants.

BACKGROUND OF THE INVENTION

Alcoholic beverages, such as vodka, tequila, rum, bourbon, scotch, brandy and the like are generally produced through a distillation process. Once produced, in order to improve the taste and smoothness of the beverage, many products are aged. For instance, bourbons and scotches are typically aged at least three years prior to being sold for consumption. Rums, tequilas and brandies are aged for varying amounts from 2 to 10 years or even more.

In the past, alcoholic distillates, such as bourbon and scotch, for example, have been aged in oak barrels or casks over tong periods of time. The beverages are aged in the wooden containers in order to remove unwanted components and to impart certain colors, flavors and fragrances to enhance the smoothness and taste of the beverage. During the aging process, the distillates can react with components in the wood, such as lignins, tannins, and carbohydrates. Distillation and aging techniques have changed little over the last several hundred years.

Unfortunately, the costs of conventional aging processes are enormous, often accounting for half to two-thirds or even more of the cost of the spirit to consumers. For instance, to ensure product quality, the oak barrels should be stored in warehouses under carefully controlled temperature and humidity conditions for very long periods of time. The barrels are not only very expensive to manufacture but also take up a significant amount of space. Further, much of the alcoholic product can be lost during aging due to evaporation through the pores of the barrels.

In addition, natural barrel aging, though providing the best method to date for enhancing and improving the flavor of spirits, also presents limitations to the chemical reactions which are believed to improve spirit flavor and quality. For instance, oxidation and esterification reactions which are believed to assure spirit smoothness and flavor tend to be inefficient and unable to proceed to completeness at the temperatures which are preferred for limiting loss of product due to evaporation. Thus a balance must be struck with aging processes between increased temperature in order to promote desired chemical reactions and lower temperature desired to limit product evaporation.

Due to the above deficiencies and disadvantages associated with conventional aging processes, those skilled in the art have attempted to devise processes for rapidly aging alcoholic distillates. For example, the use of oak chips and/or oak concentrates is common practice in the industry in attempting to rapidly age alcoholic distillates. For instance, U.S. Pat. No. 4,210,676 to Dudar, et al., which is incorporated herein by reference as to all relevant matter, is directed to a process and apparatus for the acceleration of the ripening of spirits. According to Dudar, et al., distilled spirits are irradiated with ultrasonic radiation in the presence of wood staves. Specifically, the '676 patent teaches applying ultrasonic energy in an amount of 1.7 Watts per liter of alcohol.

Although the prior art has attempted to devise rapid aging processes for distilled spirits, to date no process has gained any real commercial importance. As such, a need exists for a process capable of rapidly aging alcoholic beverages which can not only provide a consumable beverage equivalent to traditionally aged products in taste, aroma, smoothness, color, as well as other characteristics, but can even improve upon these qualities through more complete reaction of the beneficial chemistry involved in the aging process.

BRIEF DESCRIPTION OF THE FIGURES

A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which;

FIG. 1 graphically illustrates the presence of higher alcohols in raw distallate, commercial distillate aged two years, and an exemplary product formed according to the presently disclosed process;

FIG. 2 illustrates pH data for the samples of FIG. 1; and

FIG. 3 graphically compares the presence of phenols in 12-year old single malt scotch and a 3-year old product treated according to the process of the present invention.

SUMMARY OF THE INVENTION

In one embodiment, the present invention is directed to a process for maturing alcoholic beverages. In general, the process includes subjecting a distilled consumable alcohol to ultrasonic energy at at least about 3 Watts/liter for a time sufficient to after the chemical properties of the alcohol.

Any alcohol can be matured through the present process. For example, the alcohol can have an alcohol content between about 20 proof and about 190 proof. In one embodiment, the alcohol can have an alcohol content between about 80 and about 150 proof.

In one embodiment, the alcohol can be recirculated through the reaction vessel where it is contacted with ultrasonic energy.

In certain embodiments, the ultrasonic energy can be at a power of at least about 5 Watts/liter, more specifically between about 10 and about 80 Watts/liter. Moreover, the ultrasonic energy can be at a frequency of greater than about 20,000 Hz, more specifically between about 20,000 and about 170,000 Hz in one embodiment, the ultrasonic energy can be at a frequency greater than about 35,000 Hz, for instance, in one embodiment, the ultrasonic energy can be at a frequency of about 80,000 Hz.

The alcohol can generally be at a temperature of between about 70.degree. F. and about 150.degree. F. during the process of the present invention. In one embodiment, the alcohol can be at a temperature between about 90.degree. F. and about 120.degree. F. during the process.

In one embodiment, the alcohol car be contacted with a purifying agent before, during, and/or after the present process. For instance, the alcohol can be contacted with activated carbon, diatomaceous earth, a filter, or a combination of purifying elements. For instance, a filter having an average pore size of less than about 5 .mu.m can be used either alone or with other purifying agents to purify the alcohol.

The amount of time the alcohol is contacted with the ultrasonic energy can vary depending on process conditions and desired product. Generally, the alcohol can be contacted with the ultrasonic energy for at least about one hour. In one embodiment, the alcohol can be contacted with the ultrasonic energy for between about 12 and about 36 hours.

In one embodiment, the alcohol can have flavorings added during the process. For example, the alcohol can be contacted with a desired flavorant and subjected to ultrasonic energy. Examples of possible flavorants can include wood, seeds, fruitwoods, nuts, fruits, plants, vegetables, or mixtures of flavors. If the flavorant is a solid, the flavorant can be filtered from the beverage after the alcohol has been subjected to the ultrasonic energy. In one embodiment, the alcohol can be contacted with additional ultrasonic energy after removal of the solid flavorant from the alcohol.

A flavorant can be added either before contact with any ultrasonic energy or after, as desired. If the flavorant is added after the initial ultrasonic energy contact, additional ultrasonic energy contact can be established. For instance the alcohol can be contacted with ultrasonic energy, a flavorant can be added, and the flavorant/alcohol mixture can again be contacted with ultrasonic energy. In one embodiment, the flavorant/alcohol mixture can be contacted with additional ultrasonic energy for a period of between about 2 and about 4 hours.

If desired, a grain alcohol can be matured and/or flavored through the present process, though when maturing a grain alcohol, a catalyst should be added to the alcohol prior to contacting the alcohol with the ultrasonic energy. For instance, a sugar, an organic acid, an ester, a wood extract, or a combination of catalysts can be added to the grain alcohol prior to subjecting the alcohol to ultrasonic energy.

The product produced by the present process can be matured very quickly, for example in about thirty days or less, and can have unique characteristics. For example, the alcoholic product produced by the process of the present invention can include certain congeners in an amount only found in distilled beverage products aged for years in oak. For example, the product of the present invention, though not aged for more than about three years in an oaken barrel, can include vanillin in an amount greater than about 4.0 mg/L and syringaldehyde in an amount greater than about 8.0 mg/L. Other, less desirable congeners can be found in smaller quantities in the products produced by the present process when compared to other products. For example, the alcoholic product of the present invention can have about 20% less amyl alcohols than a similar product which has not been subjected to ultrasonic energy.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary construction.

The present invention generally relates to a process for improving the taste and smoothness of alcoholic beverages, and particularly distilled alcoholic beverages, in order to obtain maximum palatability. The process of the present invention can be used to flavor alcoholic beverages and also can be used to rapidly age alcoholic beverages.

In the past, conventional methods for aging fermented and distilled spirits included placing the beverages for many years in wooden, usually oak, casks in order to rid the beverage of unwanted components and to impart certain colors, flavors and fragrances that enhance the smoothness and taste of the beverage. The process of the present invention can produce beverages with similar and even improved characteristics over conventionally aged beverages in a fraction of the time.

In general, the present invention is directed to a process during which desirable elements are added and undesirable elements are removed from a distilled alcoholic composition such as through interaction and/or chemical reaction between the components already present in the composition or through reaction with components added to the composition. In any case, and for at least a portion of the process, the composition is contacted with ultrasonic energy. The process is designed to produce an alcoholic product having enhanced beverage characteristics, even under less than ideal conditions, with less than perfect mixes and/or with less than ideal feed stock beverages.

The alcoholic products that can be produced according to the present invention include not only products to be directly consumed, but also alcoholic products which can be used as extracts. For instance, an alcoholic beverage can be flavored with various flavorants and used as an extract. Such flavorants can include, for instance, nuts and herbs as will be described in more detail hereinafter.

The process of the present invention offers various advantages and benefits over conventional processes. For instance, mature alcoholic beverages can be produced within a matter of hours or days as opposed to the several years many aging processes require. During the process of the present invention, much less alcohol feed stock is lost due to evaporation in comparison to conventional aging methods. Further, the process of the present invention can produce flavor in beverages while requiring far less flavorants, for example, less raw wood, while producing the same quality of flavor as other flavoring processes.

The process of the present invention is economical and does not require a substantial amount of labor or equipment. The process of the present invention is also easily controllable for producing beverages with uniform characteristics. The process can be configured either as a continuous process or as a batch process, as desired. Finally, it is believed that the product produced by the process of the present invention is unique and has many improved characteristics in comparison to many commercial products that are currently on the market, including traditionally aged products.

The process of the present invention begins by first selecting an alcohol feed stock. In general, any distilled or high proof consumable alcohol may be used in the process including alcohols produced by a continuous or batch process. For instance, 20 proof to about 190 proof distillates may be used. In one embodiment, the distillate selected can have a proof of from about 80 to about 150.

A non-exhaustive list of examples of alcohols that may be used in the process of the present invention include vodka, tequila, rum, brandy, bourbon, scotch, rye, and spirits made from combinations of grains, or grains and other fermentable fruits and vegetables. Further, the alcohol used in the process can first be partially aged through other aging methods or can be provided directly to the present process from the distilling operation.

When incorporated into the process of the present invention, the alcoholic beverage can be used as is or can be mixed with other ingredients. For instance, optionally, a catalyst or a flavorant can be added to the alcohol feed stock in order to initiate and speed up the process or in order to otherwise enhance various characteristics of the alcohol.

Distilled consumable alcohols are herein defined as those consumable alcoholic products which include ethanol and water as well as other chemical components. These alcohol feed stocks can be used as is in the processes of the present invention, and additives, such as catalysts or flavorants, while optional, are not required. In contrast, grain alcohols, such as Everclear.TM., for example, will require an added catalyst prior to processing according to the present invention. For example, in one embodiment, grain alcohol can be mixed with a distilled consumable alcohol prior to being processed according to the present invention. Alternatively, a grain alcohol can be mixed prior to processing according to the present invention with an additive which can provide the desired catalytic activity. In general, a catalyst additive should have a polar charge and should be soluble in the alcohol.

Examples of additives that may be used in the present invention include sugars, such as corn sugar, sugar cane, fructose, glucose, caramels and the like; esters, such as flavorant oils and extracts including, for example a peppermint extract, a walnut extract, and the like; weak acids, such as citric acid; aldehydes; phenols, such as wood extracts and salts of the above. Such additives, which are only exemplified in this particular listing, may be used as catalysts for the process, such as when a grain alcohol is processed, or may be utilized as additives to enhance a distilled consumable alcohol which does not require any catalyst for the process. For example, an additive can enhance color, flavor, aroma, and/or smoothness of the beverage.

In one embodiment of the present invention, a sugar can be used as a catalyst in the process. If necessary, and depending upon the composition of the alcohol feed stock, a sugar can be added to the alcohol feed stock so that the alcohol has a total sugar concentration of up to about 2%, and particularly at a level of about 1%. It should be understood that the actual amount of the catalyst added will depend upon the particular alcohol. In some processes the catalyst can be added to make the sugar concentration greater than 2% such as up to about 5%. In some processes, however, no sugar is added.

In order to improve the taste and other characteristics of the alcohol feed stock in accordance with the present invention, the alcohol is subjected to ultrasonic energy. In one embodiment, the alcohol can be subjected to ultrasonic energy in the presence of various flavorants, though this is not required, to further enhance the beverage.

The process of the present invention can be performed in either a batch or continuous operation. For descriptive purposes only, the process has been divided into three separate stages, only the first of which is required by the present process. It should be understood, however, that the `stages` described need not be carried out separately, and can all be combined in one continuous process operation.

The alcoholic beverages of the present invention can be improved by processing via only the first stage, the first and second stage, or via all three stages, depending upon the particular application and the desired results. The following is a detailed description of each stage that may occur during the process.

Stage I

In Stage I, the alcoholic feed stock is placed in a vessel and subjected to ultrasonic energy. If desired, a catalyst can be added to the alcoholic feed stock, though, as previously discussed, a catalyst is required only with grain alcohol feed stocks. In one embodiment, the alcohol can be recirculated through the vessel during this stage. During this stage, which can be a stand alone process, the smoothness and flavor of the alcoholic feed stock can be significantly improved.

One important aspect of the present invention is the amount of ultrasonic energy that is used during the process. For instance, for most applications, the amount of ultrasonic energy to which the alcohol is subjected should be at least 3 Watts per liter and particularly at least 5 Watts per liter. More particularly, the amount of ultrasonic energy can range from about 10 Watts per liter to about 80 Watts per liter. In one embodiment, the amount of ultrasonic energy can range from about 15 Watts per liter to about 40 Watts per liter.

At the above energy levels, the beverage can be sonicated at various ultrasonic frequencies without limitation. For instance, the beverage can be sonicated at a frequency of at least 20,000 Hz (the base frequency for ultrasonic energy) and particularly at a frequency of from about 20,000 Hz to about 170,000 Hz. In one embodiment, the alcohol can be sonicated at a frequency of greater than about 35,000 Hz. For example, the alcohol can be sonicated at a frequency of about 80,000 Hz. At the above energy levels and frequencies, the ultrasonic energy can cause the alcohol to undergo cavitation. As used herein, cavitation refers to a process wherein any bubbles that form in the liquid are abruptly smashed by the ultrasonic energy.

Due to being subjected to the ultrasonic energy, the temperature of the alcohol can increase. It is believed that this is a beneficial side effect in that preferably the temperature of the alcohol can be maintained between about 90.degree. F. and about 120.degree. F. during the process. If necessary, a cooling device can be placed in association with the vessel during the process in order to prevent the alcohol from becoming too hot. For example, the alcohol generally should not exceed about 150.degree. F. during the process of the present invention. Similarly, if the temperature of the alcohol drops below about 70.degree. F., not all of the desired chemistry can take place, and the product beverage may not be improved as much as desired. Though these exemplary temperatures may be preferred in some embodiments, it should be understood that they are not strictly required according to the process of the present invention. In certain embodiments, the present process can be effective at temperatures below 70.degree. F. or above 150.degree. F. It is believed that a temperature range of from about 90.degree. F. to about 120.degree. F. is one possible range acceptable to promote the chemical and/or physical transformations that occur in the alcohol.

In one embodiment, while being subjected to ultrasonic energy, the beverage can also be circulated to and from the reactor vessel. Circulating the beverage can distribute the ultrasonic energy more evenly and can produce a more uniform product.

The size of the reactor vessel that is used can vary depending upon the particular process and is generally not critical. It is believed that the present process can be developed for a reactor vessel of any desired size. For example, the present process can be designed for a small, home-use type of process, with a relatively small, batch type design, or alternatively can be sized for any large scale, continuous alcoholic beverage production facility.

In one embodiment, during this stage of the process, the alcohol can be brought into contact with various purifying elements in order to remove undesirable impurities contained within the alcohol. Such purifying elements can include, for instance, activated charcoal, physical filtering elements, including those with filtration pores of an average diameter down to the micron scale, and/or diatomaceous earth. The purifying elements can be placed directly into the alcohol and removed by filtration or can be placed into a filter element through which the alcohol is directed. In a further embodiment, the purifying elements can be placed in the vapor space above the beverage as it is being subjected to ultrasonic energy. In addition to removing impurities, the purifying elements can also improve the color and clarity of the product. One embodiment of the present invention uses filtration elements in series with both mineral and fiber filtration processes.

The amount of time Stage I of the process requires can depend upon the particular application, the alcohol selected, whether or not a catalyst is used, as well as various other factors. In general, the alcohol can be subjected to ultrasonic energy in this stage for at least about 1 hour. Longer times, however, such as from about 18 to about 38 hours, may be preferred depending on, for example, the level of impurities in the alcoholic feed stock, or how far to completion it is desired to go in certain flavor enhancing chemical reactions. In one embodiment, the alcoholic feed stock can be subjected to ultrasonic energy in this stage for between about 12 and about 18 hours.

Although not wishing to be bound by theory, it is believed that the ultrasonic energy modifies the structure of the alcoholic beverage. In particular, the alcoholic feed stock contains water molecules. It is believed that the ultrasonic energy causes intimate contact and coordination between the water and alcohol. It is further believed that when the water molecules become laced with the alcohol molecules, the smoothness and flavor of the resulting product is greatly enhanced.

As stated above, after Stage I, for many alcoholic beverages, no further processing is desired and the product is ready to be marketed and consumed. Vodka, tequila and rum are typical examples of alcoholic feed stocks which can reach desired product quality levels after being processed according to the present invention via Stage I only.

Stage II

In addition to the smoothness of the alcoholic beverage being improved in Stage I, if desired, the alcohol can be processed further through a second and, if desired, a third stage. The purpose of Stage II is to impart flavor into the alcohol through intimate contact with flavorants, such as natural ingredients. Stage II can occur simultaneously with Stage I or optionally, can follow completion of Stage I processing.

As previously stated, it is believed that by being subjected to ultrasonic energy, the water and alcohol in the feed stock can become intimately coordinated. It is further believed that this process can prepare sites for bonding between constituents in the liquid and other additives. As such, other product enhancing additions to the beverage can be readily and rapidly integrated with the liquid following, or at the same time, as the sonication of Stage 1 occurs.

For instance, at this stage in the process, the alcohol can be contacted with flavorants that imitate flavoring which occurs over time in wooden containers. For example, in one embodiment, a mixture of wood particles obtained from one or more sources can be combined with the alcohol. The wood particles should be appropriately sized, for example the size of standard wood chips, so that the alcoholic beverage can remain in intimate contact with the wood. The wood particles can be obtained from different wood types such as hardwoods including, for example, oak and maple. The wood particles can also have treated surfaces such as by toasting or charring, by adding flavor or fragrance elements to the surface of the wood, or by using wood particles that have previously been used to age alcohols.

In addition to or alternatively to wood particles, other flavorants can be added to the alcohol in accordance with the present invention. For instance, in addition to producing alcohols with characteristics similar to traditionally aged products, the process of the present invention can be used to produce flavored alcohols, such as berry flavored alcohols, citrus alcohols, nut flavored alcohols, and the like.

A nonexhaustive list of flavorants and additives that may be used in the process of the present invention include the following:

TABLE-US-00001 Seeds: caraway, anise, sesame, etc. Woods: oak (in any of its various species); beech; maple (hard, soft, sugar); birch; teak (wood flavorants include versions of the same wood that have been toasted to varying degrees, charred or charcoaled) Fruitwoods: pecan, apple, peach, pear, apricot, cherry, walnut Nuts: pecan, walnut, almond, cashew, hazelnut, macadamia, coconut Fruits: apricot, apple, cherry, citrus (lemon, lime, grapefruit, tangerine, tangelo, cumquat, etc.); grape, raisin, mango, pineapple, plum Plants: mints, vanilla, cinnamon, cocoa, peppers, all herbs Vegetables: artichoke, celery, etc.

The amount of flavorants added to the alcohol can depend upon the particular application. In general, flavorants can be added up to about 5 ounces per liter of alcohol, particularly flavorants can be added in a range of about 0.2 to about 2.5 ounces per liter of alcohol. In one embodiment, flavorants can be added in a range of from about 1.0 to about 1.5 ounces per liter. More or less flavorants can optionally be used however.

As shown above, the process of the present invention is capable of using natural ingredients rather than using extracts, although extracts or concentrates may optionally be used in the process. Further, it should be understood that the particular flavorants used in any particular process will depend upon the product that is being produced. Consequently, a single flavorant or a mixture of flavorants may be combined as appropriate.

During this stage of the process, after the flavorants have been combined with the alcohol, the alcohol can continue to be subjected to ultrasonic energy at the frequencies and energy levels as described above. Further, the alcohol can be recirculated during the process, as previously described. Recirculation combined with the ultrasonic energy can cause the flavor of the alcohol to more rapidly be changed.

During this stage, when flavorants are present, the process can be both heat sensitive and time sensitive. As described above, due to the ultrasonic energy, the alcohol can naturally increase in temperature. When the flavorants are present, the temperature should be maintained below about 150.degree. F., particularly between about 70.degree. F. and about 150.degree. F. In one embodiment, the temperature can be maintained between about 100.degree. F. and about 120.degree. F.

The amount of time the flavorants stay in contact with the alcohol under ultrasonic agitation will depend upon the process conditions. When Stage II is separate from and follows the completion of Stage I, this stage of the process can usually last between about 2 hours and about 4 hours. When this stage is combined with Stage I, however, the flavorants can stay in contact with the alcohol for a period of time equivalent to that described above for Stage I alone. In other words, when Stage I and Stage II are combined, sonication can be carried out for a period of time equivalent to when Stage I is carried out alone, when no flavoring additives have been included in the feedstock. Exposing the alcohol to the flavorants for an overly extended period of time should be avoided, as it can allow undesirable flavors to develop in the liquid product.

In those embodiments wherein the flavorants are in solid form, i.e. dried or fresh flavorants as opposed to liquid extracts or concentrates added to the alcohol, after the alcohol and flavorants have been mixed and subjected to ultrasonic energy for a predetermined amount of time, the solid flavorants can then be filtered from the mixture. Any suitable filter may be used for this purpose. For instance, a micron sized fabric filter may be used. The mixture may also be cold filtered.

Ultimately, this stage of the process can impart flavor to the alcoholic beverage and can improve its color and aroma. Further, it has been discovered that by selecting various combination of flavorants, not only are desirable flavors enhanced, but undesirable flavors can be masked and the causative undesirable flavorants can be reduced in amount.

Stage III

In Stage III of the process of the present invention, which is optional after any solid flavorants of Stage II have been removed, ultrasonic agitation of the alcohol can be continued along with optional recirculation. In this stage, the ultrasonic energy can mesh and bond the flavors into the alcohol.

In particular, during this stage of the process, the ultrasonic energy can be applied to the alcohol at the same frequencies and energy levels as described above. Further, the temperature of the beverage should remain within the same range as described with respect to Stage II of the process. Stage III is not time dependent, but for most applications, can last from about 30 minutes to about 6 hours. Longer times may be used if desired. During this part of the process, the beverage can also be further filtered in order to ensure that no particulate material remains in the liquid, as well as to improve clarity to commercial standards. Alternatively or in addition to filtering the beverage during Stage III of the process, the beverage can be filtered after sonication has ceased.

By continuing ultrasonic agitation after removing any solid flavorants, it is believed that the flavors can become more permanently associated with the beverage.

In combination with the present process, other known processing techniques can be included in formation of the desired beverage. For example, other existing commercial processes such as microoxidation, recirculation in oxygen enhanced or deprived conditions, coloration, polish filtration, or inclusion of other additives to the product may be incorporated into the present process. Such known processes can be incorporated with the present invention to achieve specific desired effects in the product beverage, for example desired flavors or colors associated with maximum aged brands of alcoholic beverages, i.e. those aged for up to 25 years prior to consumption. Additional processing can occur before, during, or following the process of the present invention depending on a wide variety of factors such as, for instance, the quality of the incoming distillate, the flavor, clarity, or aroma desired in the product, and the like.

It has been discovered that the flavor of the alcohols produced by the present process will not decay over time, even under unfavorable storage conditions such as warehouse storage at approximately 120.degree. F. This has been found to be the case not only for those flavors natural to traditionally aged alcoholic beverages, for example, the natural bourbon, gin, rum, brandy, etc. flavors, but also for flavors which have been added to the beverage. For example, citrus flavors can be added to an alcoholic beverage, such as vodka; and certain flower flavors can be associated with spiced rums and/or scotch liquors. Such flavored alcohols, when processed via the present invention, can retain the added flavor better and for a longer time than can flavored alcohols processed according to other maturation and flavoring processes. Further, this process can lace the flavors together and can provide a fuller flavor. It has also been discovered that the clarity of the beverage can also be improved through the process of the present invention.

Through the above one to three stage process, various consumable alcoholic beverages can be produced, all with improved smoothness characteristics. Besides smoothness, the present invention can also be used to improve color, clarity, aroma and taste. In fact, it is believed that the process of the present invention generates a fundamentally different product than conventionally made distilled spirits, whether aged or not. As described above, it is believed that the process can produce a beverage having a unique structure formed between the alcohol and any water present in the beverage.

For example, it has been discovered that an alcoholic beverage produced according to the process of the present invention can have unique pH, conductance, gas chromatograph/mass spectrophotometer, viscosity and/or filtration properties.

It should also be understood that the characteristics of the products produced by the present invention are permanent and will not degrade over time. In fact, it has been discovered that not only are the characteristics of the products produced by the present invention resilient and do not substantially decay, but the product characteristics actually continue to improve over time, suggesting that a permanent physical and/or chemical transformation occurs through the processes of the present invention, and an improved alcoholic beverage can be produced.

The combination of fermentation, distillation and maturation in traditionally aged products is known to produce hundreds of chemical compounds in the final product. Even though they may be present only in parts per million, the sensitive human palate can detect many of these compounds. Taken collectively, these trace compounds are known as congeners, and they include, among others, aldehydes, esters and primary alcohols. While congeners are necessary and desirable for distinguishing one brand from another, many of these compounds are undesirable, yet unavoidable artifacts of the production process.

One of the more widely known classes of congeners is the higher alcohols, sometimes called fusel oils. In general, the compounds in this group are a mixture of volatile, oily liquids with a disagreeable odor and taste. And taken in sufficient quantities, they can be dangerously toxic to humans.

As a rule, neutral spirits generally have fewer congeners than darker spirits, and research has shown that beverages composed of more pure ethanol, such as gin or vodka, may induce fewer hangover effects than do beverages containing a large number of congeners, such as bourbon or brandy. Through the process of the present invention, alcoholic beverages, such as rum, for instance, can be produced with reduced levels of certain congeners. Specifically, the alcoholic beverages produced by the process of the present invention can have reduced levels of undesired higher alcohol congeners such as amyl alcohols, isobutanol, and propanol, for example, in the final product as compared to slower aged, similar products. It is believed that such improvements are due to improved efficiency and control of a variety of the chemical reactions involved in the maturation of flavor enhancement of alcoholic beverages.

As previously mentioned, there are believed to be hundreds of different compounds affecting the characteristics of aged alcoholic beverages, however, there are believed to be five aromatic aldehydes, eight phenols, six carbohydrates and half a dozen oxidation products or minor extractives that make up the major flavor components in barrel aged spirits. (SINGLETON, V. L. "Maturation of Wines And Spirits: Comparisons, Facts and Hypotheses", Am. J. Enol. Vitic. 25(1):98-115, 1995.)

During traditional maturation processes in oaken barrels, many of the components in the beverage which are extracted from the wooden containers will undergo oxidation/ethoxylation reactions, with an increasing proportion of the extracts being converted over the course of the aging process into smoother tasting esters, such as vanillin, or other acidic reaction products such as ellagic acid, gallic acid, and syringaldehyde, for example. Thus, aged alcoholic beverages can have increasingly higher levels of some extracts over time, such as phenols, for example. Other extracts, those subject to oxidation/ethoxylation reaction, can have levels that peak after a time and then begin to decline as the extracts are converted. Additionally, the level of the reaction products in the alcohol will increase proportionally as the reactant extract levels decrease. The net result of the aging process will therefore tend to decrease pH of the beverage over the near term of the aging process due to both the increased amount of the acidic extracts and the increased amount of the oxidation/ethoxylation reaction products in the beverage.

Typical levels (shown in mg/L) of ellagitannin extracts and related oxidation/ethoxylation reaction products over time for oak aged alcoholic cognacs are as follows:

TABLE-US-00002 1 year 10 years 30 years Ellagitannins 10 31 4 Ellagic acid 7 32 55 Gallic acid 3 22 26 Vanillin 0.6 5.8 7.2 Syringaldehyde 1.1 10.9 14.2 Vanillic acid 0.9 3.1 5.4 Syringic acid 0.8 4.0 6.4

Though these values are specific to cognacs, they are typical values for any oak aged alcoholic beverage.

Through the process of the present invention, alcoholic beverages can be produced in approximately 30 days having levels of oxidation/ethoxylation reaction products, such as gallic acid, vanillic acid, and vanillin, for example, substantially equivalent to the amounts of these compounds found in commercial products aged for approximately 12 years in oak. This is believed to be due to the accelerated pace of the maturation chemistry which is obtained in the process of the present invention.

The levels of those congeners which are oxidation/ethoxylation reaction products of extracts found in the products of the present invention, produced in a matter of days or weeks, can be equivalent to or greater than the levels of the same congeners found in alcoholic beverages which have been aged through years of storage in oaken barrels. For example, products produced by the process of the present invention can have ellagic acid levels greater than about 20 mg/L, gallic acid levels greater than about 15 mg/L, vanillin levels greater than about 4.0 mg/L, syringaldehyde levels greater than about 8.0 mg/L, vanillic acid greater than about 2.0 mg/L, and syringic acid greater than about 3.0 mg/L. These are levels of congeners which would be typical of alcoholic beverages aged for three years or more in wooden barrels. In some embodiments the levels of these congeners in the products of the present invention are equivalent to or greater than the levels of the same congeners found in similar beverages aged for five years or more in wooden barrels.

In one embodiment, the alcoholic beverages produced by the present invention can have vanillin levels between about 5.0 and about 7.5 mg/L, and can have syringaldehyde levels between about 7.0 and about 15.0 mg/L.

Free radicals are positively charged ions found in all alcoholic beverages, and are most likely due to the polar fractions from higher alcohols and unstable esters (less likely are nitrogen fragments and organo-metallics). Free radicals are an important measure of the "completeness" of post-distillation aging. In general, fewer free radicals indicates a more properly finished product. The quantity of all radicals found in distillates processed according to the present invention will generally be less than that found in similar commercial aged products, suggesting that the process of the present invention can yield a more thorough, tightly controlled maturation than can years of barrel aging. For example, in one embodiment, the product produced according to the process of the present invention can have about 70% fewer free radicals than a similar product which has been subjected to a slower barrel aging process.

The present invention may be better understood with respect to the following examples.

EXAMPLE 1

A test program was set up to compare the addition of varying levels and types of wood particles to unaged 80 proof corn whiskey and rum followed by subjection to varying energy levels of ultrasound in combination with various sugar catalysts. The mixtures were filtered through fibers, both alone and in the presence of activated charcoal and/or diatomaceous earths. Some finished specimens had flavor additions of common flavors and fragrances, such citrus, vanilla, pecan, walnut, etc. combined with the mixtures and subjected to additional ultrasonic energy.

All specimens tested showed varying degrees of improvement. Those described below are typical of one possible embodiment of the invention.

Equal 6 ounce 80 proof unaged corn whiskey samples (commercially available Georgia Moon) were measured into 500 milliliter(ml) jars, to which was added 15 ml plain and toasted white oak wood dust and 30 ml plain maple wood dust. Each sample was then placed in a commercial ultrasound machine with water up to the neck of the container and treated with ultrasonic energy. Samples were removed every five minutes, with the last being removed 50 minutes after start.

The treated samples were filtered through paper and gold metal mesh and rated according to subjective criteria as listed below in Table 1 (scale of 1 to 10 with 10 being the best) against a standard sour mash bourbon (Jim Beam) that had been aged for four years. Taste was compared for both the straight samples at 80 proof and samples blended with water to 40 proof.

TABLE-US-00003 TABLE 1 Taste, Taste, Sample Color Clarity Aroma 80 Proof 40 Proof 10 min 10 9 8 7 8 50 min 10 9.5 9 9 10 Jim Beam 8 10 8 7.5 7

EXAMPLE 2

Two equal 14 1/2 a ounce samples (A and B) were prepared by combining Georgia Moon (80 Proof) and Everclear (190 proof), blended to make 99 proof. The samples were then prefiltered in a sleeve filter containing activated carbon, and were then placed in an ultrasonic unit for two hours. Samples were removed, filtered through a paper and gold metal filter. Products were compared with Wild Turkey age 8 years (80 proof), as shown below in Table 2.

TABLE-US-00004 TABLE 2 Taste, Taste, Sample Color Clarity Aroma 99 Proof 50 Proof A 10 8 8 8 8 B 9 9 9 9 10 Wild Turkey 10 10 9 9 7 (80 Proof) (40 Proof)

Flavor additives improved aroma and flavor to the 9 to 10 range for both the A and B samples.

EXAMPLE 3

The graph shown in FIG. 1 was produced using a combination of gas chromatography and mass spectrometry. The analysis tested raw distillate from a popular rum supplier (Cruzan), the commercial brand made from that distillate (aged two years), and the raw distillate 30 days after treatment with the process of the present invention. The test scanned for the presence of higher alcohols.

According to the results, and as can be seen with reference to FIG. 1, the rum produced by the process of the present invention contained 12.4% less methanol, 41.1% less propanol, 69.6% less isobutanol, and 29.7% less amyl alcohols, as compared to a similar, traditionally aged rum. Since ethanol is the overwhelming component in the scan, its peaks have been omitted for the sake of clarity. Also, the y-axis has been scaled to more clearly show abundance of trace components.

These results are believed to be accurate for other types of alcoholic beverages produced by the present invention as well. For example, alcoholic beverages produced by the process of the present invention can have at least about 10% less methanol, about 35% less propanol, and about 20% less amyl alcohols then similar types of beverages which have been aged for at least two years in wooden barrels. Amyl alcohols being defined for the purposes of this disclosure to be a mixture of isomeric alcohols. This effect is particularly noticeable for isobutanol; the present product can have about 50% or more less isobutanol than a similar alcoholic beverage which has not been matured via the present process.

While the phenolics tested above are not responsible alone for flavor, the graph does demonstrate the efficiency with which the process of the present invention both extracts key flavor components and converts these mostly acid compounds into smoother tasting esters with more neutral pH readings via oxidation/ethoxylation.

The chart shown in FIG. 2, which shows pH data for the samples, supports this conclusion.

EXAMPLE 4

The graph shown in FIG. 3 compares the presence of phenols in a top-selling, 12-year old single-malt Scotch and a 3-year old product (the minimum age required to be called "Scotch Whisky") treated according to the process of the present invention. The graph also shows amounts of vanillin, formed from the esterification of vanillic acid.

As can be seen with reference to FIG. 3, the curves are almost identical, even though one sample spent an additional nine years in a barrel. These samples were also submitted to professional tasters. The product produced by the present invention was rated superior in smoothness and flavor to the popular 12-year old single-malt.

These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention.
Last edited by varocketry on Wed Nov 11, 2015 6:42 pm, edited 1 time in total.
-Just need something else to build. -
MDH
Distiller
Posts: 1001
Joined: Tue Nov 29, 2011 4:33 pm
Location: Pacific Northwest

Re: 20 years of aging in 6 days

Post by MDH »

https://www.google.com/webhp?sourceid=c ... 20reaction" onclick="window.open(this.href);return false;" rel="nofollow

Long story short, Bryan is just heating the spirit to accelerate the reaction rate inside of a vessel with reflux to force reactants back down into the reactor. There are plenty of ways to knock this challenge down and he is using only one of them.

Regardless of all this as well, I think there are many factors that work into aging in ways that none of these techniques pay respect to. It is well known that volatile compounds can, and more than likely do enter the barrel through osmosis from outside the barrel e.g. smells from a nearby beach, forest, or cellar.
The still is not a liar. Mash and ferment quality is 99.9% of your performance.
varocketry
Site Donor
Site Donor
Posts: 514
Joined: Fri Mar 22, 2013 5:15 pm
Location: somewhere not near Detroit

Oxygenated aging Pt1

Post by varocketry »

United States Patent 9,032,864
Roleder May 19, 2015
Container assembly for aging a liquid

Abstract
A container assembly (10) for retaining a liquid (16) during aging of the liquid (16) comprises a container (12) and an oxygenator (230). The container (12) includes a container body (14) that defines a chamber (14A) that receives and retains liquid (16). The oxygenator (230) is positioned substantially within the chamber (14A). The oxygenator (230) includes a fluid source (662), one or more diffusers (672), and a valve (670). The one or more diffusers (672) are in fluid communication with the fluid source (662). The valve (670) selectively controls the introduction of a fluid from the fluid source (662) into the liquid (16) through the one or more diffusers (672). The container assembly (10) further comprises an insert retainer assembly (338) and one or more flavor inserts (440) that are received and retained by the insert retainer assembly (338).

Inventors: Roleder; Jonathan W. (San Diego, CA)

This application claims priority on U.S. Provisional Application Ser. No. 61/252,518 filed on Oct. 16, 2009 and entitled "Installation and Procedure for Introducing Micro Oxygenation Into a Vessel for Aging a Liquid". As far as is permitted, the contents of U.S. Provisional Application Ser. No. 61/252,518 are incorporated herein by reference.
Claims


What is claimed is:

1. A container assembly for retaining a liquid during aging of the liquid, the container assembly comprising: a container including a container body that defines a chamber that receives and retains the liquid; and an oxygenator that releases a fluid into the chamber while the chamber is retaining the liquid, the oxygenator being positioned substantially within the chamber, the oxygenator retaining the fluid within the chamber and releasing the fluid over time into the liquid within the chamber; wherein the oxygenator includes (i) a fluid tank that retains the fluid, the fluid tank being positioned within the chamber, (ii) a diffuser that is in fluid communication with the fluid tank, the diffuser being positioned within the chamber, and (iii) a valve for selectively controlling the release of the fluid from the fluid tank to the diffuser, the valve being positioned within the chamber.

2. The container assembly of claim 1 wherein the valve regulates the volume and rate of flow of the fluid that is being released from the fluid tank into the liquid.

3. The container assembly of claim 1 wherein the container includes a central axis and wherein the fluid tank extends along the central axis.

4. The container assembly of claim 1 further comprising a mount assembly that rotatably secures the oxygenator to the container body so that the oxygenator is selectively rotatable relative to the container.

5. The container assembly of claim 4 further comprising an insert retainer assembly and one or more flavor inserts, the insert retainer assembly being secured to the oxygenator within the chamber, the insert retainer assembly selectively receiving and retaining the one or more flavor inserts within the chamber.

6. The container assembly of claim 5 wherein the container further includes a container aperture that extends through a top of the container body, the container aperture having a size that is less than approximately twenty-five percent of the total surface area of the top of the container body; and wherein the container further includes an access door that selectively closes and seals the container aperture.

7. A container assembly for retaining a liquid during aging of the liquid, the container assembly comprising: a container including a container body that defines a chamber that receives and retains the liquid; an oxygenator that releases a fluid into the chamber while the chamber is retaining the liquid, the oxygenator being positioned substantially within the chamber, the oxygenator retaining the fluid within the chamber and releasing the fluid over time into the liquid within the chamber; and an insert retainer assembly and one or more flavor inserts, the insert retainer assembly being fixedly secured to the oxygenator within the chamber, the insert retainer assembly selectively receiving and retaining the one or more flavor inserts within the chamber.

8. The container assembly of claim 7 further comprising a mount assembly that rotatably secures the oxygenator to the container body so that the oxygenator, the insert retainer assembly and the one or more flavor inserts are selectively rotatable relative to the container.

9. A container assembly for retaining a liquid during aging of the liquid, the container assembly comprising: a container including a container body that defines a chamber that receives and retains the liquid; and an oxygenator that releases a fluid into the chamber while the chamber is retaining the liquid, the oxygenator being positioned substantially within the chamber, the oxygenator retaining the fluid within the chamber and releasing the fluid over time into the liquid within the chamber; wherein the oxygenator includes a valve that allows for the filling of the oxygenator with fluid.

10. The container assembly of claim 9 wherein the container body includes a top, a bottom, a side wall, a container aperture that extends through the top, and an access door that selectively closes and seals the container aperture; wherein the container assembly further comprises (i) an insert retainer assembly positioned within the chamber, the insert retainer assembly including a plurality of retainer arms, with each retainer arm extending radially toward the side wall, wherein each retainer arm includes a plurality of spaced apart insert openings; (ii) a plurality of flavor inserts that impart a flavor on the liquid, each flavor insert being sized and shaped to fit through the container aperture and into one of the insert openings; and a mount assembly that rotatable secures the insert retainer assembly to the container body so that the insert retainer assembly is selectively rotatable relative to the container body to selectively move each retainer arm to adjacent the container aperture so that the flavor inserts can be inserted or removed from the container through the container aperture.

11. The container assembly of claim 10 wherein the container aperture has a size that is less than approximately twenty-five percent of a total surface area of the top of the container body.

12. The container assembly of claim 10 wherein the container aperture extends radially from a center of the top to a perimeter of the top.

13. A container assembly for retaining a liquid during aging of the liquid, the container assembly comprising: a container including (i) a container body that defines a chamber that receives and retains the liquid, the container body including a top; (ii) a container aperture that extends through the top, the container aperture having a size that is less than approximately twenty-five percent of a total surface area of the top; and (iii) an access door that selectively closes and seals the container aperture; a flavor insert that imparts a flavor on the liquid; an insert retainer assembly positioned within the chamber that selectively receives and retains the flavor insert within the chamber; an oxygenator that releases a fluid into the chamber while the chamber is retaining the liquid, the oxygenator being positioned substantially within the chamber, the oxygenator retaining the fluid within the chamber and releasing the fluid over time into the liquid within the chamber; wherein the insert retainer assembly is fixedly secured to the oxygenator; and a mount assembly that rotatable secures the insert retainer assembly to the container body so that the insert retainer assembly is selectively rotatable relative to the container body to selectively move the flavor insert adjacent to the container aperture and away from the container aperture.

14. The container assembly of claim 13 wherein the mount assembly rotatable secures the insert retainer assembly to the top and a bottom of the container body.

15. The container assembly of claim 13 wherein the insert retainer assembly includes a plurality of retainer arms that extend substantially radially from near a central axis of the container.

16. The container assembly of claim 15 wherein each retainer arm selectively receives and retains a plurality of flavor inserts spaced apart from each other.

17. The container assembly of claim 13 wherein the container aperture has a size that is between approximately five percent and ten percent of the total surface area of the top of the container body.

18. A container assembly for retaining a liquid during aging of the liquid, the container assembly comprising: a container including (i) a container body that defines a chamber that receives and retains the liquid, the container body including a top; (ii) a container aperture that extends through the top, the container aperture having a size that is less than approximately twenty-five percent of a total surface area of the top; and (iii) an access door that selectively closes and seals the container aperture; a plurality of flavor inserts that impart a flavor on the liquid; an oxygenator that releases a fluid into the chamber while the chamber is retaining the liquid, the oxygenator being positioned substantially within the chamber, the oxygenator retaining the fluid within the chamber and releasing the fluid over time into the liquid within the chamber; an insert retainer assembly positioned within the chamber that selectively receives and retains the flavor inserts within the chamber, the insert retainer assembly being fixedly secured to the oxygenator; and a mount assembly that rotatable secures the oxygenator and the insert retainer assembly to the container body so that the oxygenator and the insert retainer assembly are selectively rotatable relative to the container body to selectively move the flavor inserts adjacent to the container aperture and away from the container aperture.

19. The container assembly of claim 18 wherein the insert retainer assembly includes a plurality of retainer arms that extend substantially radially from near a central axis of the container; wherein each retainer arm selectively receives and retains a plurality of flavor inserts spaced apart from each other.

20. The container assembly of claim 18 wherein the oxygenator includes (i) a fluid tank that retains the fluid, the fluid tank being positioned within the chamber, (ii) a diffuser that is in fluid communication with the fluid tank, the diffuser being positioned within the chamber, and (iii) a valve for selectively controlling the release of the fluid from the fluid tank to the diffuser, the valve being positioned within the chamber; wherein the valve regulates the volume and rate of flow of the fluid that is being released from the fluid tank into the liquid.
Description


BACKGROUND

Wood barrels are commonly used to age wine and other beverages. Unfortunately, wood barrels are relatively expensive to make and have a relatively short operational life. For example, a high end barrel used for only the finest wines is typically made from French oak and is very expensive. Additionally, the chemical ability of the wood to effect and impart flavor nuances expires rapidly and a wood barrel can typically only be considered to be in its prime for two to three years, e.g. one to two vintages. Once the traditional wood barrel had exhausted its chemical ability to impart flavors on the liquid, i.e. has gone "oak neutral", the conventional barrel is often sold on the used market or committed to lesser quality beverages. This creates a rapidly depreciating asset and investment for the beverage maker. One previous method for addressing this issue is disclosed in U.S. Pat. No. 7,284,476 issued to Roleder. As far as is permitted, the contents of U.S. Pat. No. 7,284,476 are incorporated herein by reference.

Moreover, traditional wood barrels have always allowed oxygen to pass through the wood construction of the barrel, thereby introducing micro-oxygenation (i.e. small amounts of oxygen) into the wine or other beverages during the aging process. However, when wine is aged in a non-breathing vessel such as a stainless steel tank, micro-oxygenation is not happening naturally anymore. Accordingly, alternative methods have been created in order to introduce oxygen into the liquid. Modern micro-oxygenation technology involves a process used in winemaking whereby oxygen is introduced into the wine in a controlled manner so as to precisely control the amount and rate of oxygen released into the wine while it is aging.

A typical micro-oxygenation process involves a large two-chamber device with valves interconnected to a tank of oxygen. In the first chamber the oxygen is calibrated to match the volume of the wine. In the second chamber the oxygen is injected into the wine through a porous ceramic stone or sintered stainless steel diffusers located at the bottom of the chamber. Unfortunately, this process has provided less than ideal results in barrels. For example, this process has increased space requirements as the oxygen chamber must be connected with tubes to each of the barrels.

Accordingly, new devices and processes are desired which can introduce micro-oxygenation into the liquid in a well-controlled manner, and which can impart flavors on the liquid, utilizing equipment that is simple, compact, reliable, durable and affordable.

SUMMARY

The present invention is directed to a container assembly for retaining a liquid during aging of the liquid. In certain embodiments, the container assembly comprises a container and an oxygenator. The container includes a container body that defines a chamber that receives and retains the liquid. The oxygenator is positioned substantially within the chamber. In one embodiment, the oxygenator includes a fluid source, one or more diffusers, and a valve. The one or more diffusers are in fluid communication with the fluid source. The valve selectively controls the introduction of a fluid from the fluid source into the liquid through the one or more diffusers. With this design, because the oxygenator is positioned in the container assembly, the container assembly is a self-contained system for aging the liquid.

In one embodiment, the container assembly further comprises an oxygenator mount assembly that rotatably secures the oxygenator to the container body.

Additionally, in one embodiment, the oxygen source is a tank that is positioned substantially within the chamber. In such embodiment, the valve regulates the volume and rate of flow of the fluid that is being introduced from the tank into the liquid.

Further, in some embodiments, the container assembly further comprises an insert retainer assembly and one or more flavor inserts. The insert retainer assembly is mounted about the oxygenator within the chamber. Moreover, the insert retainer assembly selectively receives and retains the one or more flavor inserts within the chamber. In certain embodiments, the container further includes a container aperture that extends through the container body. The container aperture can have a size that is less than approximately twenty-five percent of the total surface area of a top of the container body. In one embodiment, the container aperture has a size that is between approximately five percent and ten percent of the total surface area of the top of the container body.

Additionally, in one embodiment, the container aperture extends outward radially from the center of the top of the container body. In some embodiments, the insert retainer assembly can include a plurality of lower retainer arms that are selectively rotatable relative to the container body. In one such embodiment, only a single lower retainer arm can be positioned within and/or removed from the chamber through the container aperture at any given rotational position of the lower retainer arms. Moreover, in one embodiment, each lower retainer arm is adapted to receive a row of flavor inserts. In such embodiment, only a single row of flavor inserts can be positioned within and/or removed from the chamber through the container aperture at any given rotational position of the lower retainer arms.

Further, in some embodiments, the insert retainer assembly can further include a plurality of upper retainer arms that are selectively rotatable relative to the container body. In one such embodiment, only a single upper retainer arm can be positioned within and/or removed from the chamber through the container aperture at any given rotational position of the upper retainer arms.

Still further, in one embodiment, the container assembly further comprises an access door that selectively closes and seals the container aperture.

Additionally, the present invention is directed to a method for retaining a liquid during aging of the liquid.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:

FIG. 1 is a perspective view of one embodiment of a portion of a container assembly having features of the present invention;

FIG. 2 is a perspective view of a portion of the container assembly illustrated in FIG. 1;

FIG. 3 is a perspective view of a portion of the container assembly illustrated in FIG. 1;

FIG. 4 is a perspective view of a portion of the container assembly illustrated in FIG. 1;

FIG. 5 is a partially exploded perspective view of a portion of the container assembly illustrated in FIG. 1;

FIG. 6A is a partially exploded perspective view of an embodiment of an oxygenator having features of the present invention;

FIG. 6B is a top view of the oxygenator illustrated in FIG. 6A;

FIG. 6C is a side view of the oxygenator illustrated in FIG. 6A;

FIG. 7A is a partially exploded perspective view of another embodiment of an oxygenator having features of the present invention;

FIG. 7B is a side view of the oxygenator illustrated in FIG. 7A; and

FIG. 8 is a simplified flow chart that outlines one embodiment of a process for installing an access door and an insert retainer assembly in an existing wood barrel.

DESCRIPTION

FIG. 1 is a perspective view of one embodiment of a portion of a container assembly 10 having features of the present invention. The size, shape, and number of components in the container assembly 10 can be varied to suit the design requirements of the container assembly 10. In the embodiment illustrated in FIG. 1, the container assembly 10 includes a container 12 having (i) a container body 14 that retains a liquid 16 (illustrated as circles), (ii) a first container aperture 18 (also referred to herein as a rotator aperture), and (iii) a second container aperture 20 (also referred to herein as an insert aperture). It should be noted that the use of the terms "first container aperture" and "second container aperture" is merely for ease of discussion, and either container aperture can be referred to as the first container aperture or the second container aperture.

In the embodiment illustrated in FIG. 1, the container body 14 is generally barrel shaped having a tubular-shaped side wall 22, a disk-shaped bottom 24 (illustrated more clearly in FIG. 2), and a substantially disk-shaped top 26. Alternatively, for example, the container body 14 can be another shape, e.g. rectangular box shaped.

Additionally, the container body 14 defines a chamber 14A that receives and retains the liquid 16 during an aging process. In alternative non-exclusive embodiments, the chamber 14A is sized and shaped to retain approximately 5, 10, 25, 55, 100, 500, 1000, 2500 or 5000 gallons of liquid 16. However, the chamber 14A can be larger or smaller. Further, in certain embodiments, the container body 14 can include a bunghole (not illustrated) that is positioned within and/or extends through the container body 14. The bunghole is adapted to receive a pipe or other conduit (not illustrated) that can be used for filling the liquid 16 into the chamber 14A, pumping or otherwise removing the liquid 16 from the chamber 14A, or racking of the liquid 16 within the chamber 14A. In alternative such embodiments, the bunghole can be positioned in the side wall 22, in the bottom 24, or in the top 26 of the container body 14.

As described herein, the container assembly 10 can be used to impart a flavor on the liquid 16 during an aging process. Additionally, the container assembly 10 can be used to introduce micro-oxygenation (i.e. small amounts of oxygen) into the liquid 16 during the aging process. In one embodiment, the container assembly 10 allows for the total control of the aging of the liquid 16, including optimum processing and aging opportunities for the liquid 16. Stated another way, the container assembly 10 can be used to precisely create the perfect environment for aging the liquid 16 so that the highest quality beverage can be achieved. Further, the container assembly 10 can be easily adjusted to be used for different types of liquids 16 and the container assembly 10 can be adjusted during the aging process, if necessary, to alter the aging process.

The type of liquid 16 aged in the container assembly 10 can vary. For example, the liquid 16 can be a red wine, white wine, port, whiskey, brandy, or other beverages.

In one embodiment, the container body 14 can be made from a stainless steel material, which imparts no flavor on the liquid 16, and which does not allow for oxygen to be naturally introduced into the liquid 16. Alternatively, in certain embodiments, the container body 14 can be made from a wood material or some other suitable food grade material. Additionally and/or alternatively, in one embodiment, certain components of the container assembly 10, as described herein, can be utilized to retrofit and extend the service life of existing wood barrels that are no longer able to sufficiently impart flavors on the liquid 16.

As will be described in greater detail below, the first container aperture 18, i.e. the rotator aperture, is utilized to assist in the installation and positioning of and/or providing access to certain additional components of the container assembly 10. The first container aperture 18 is positioned within and/or extends through the container body 14. As shown in the embodiment illustrated in FIG. 1, the first container aperture 18 can be somewhat U-shaped and can be positioned substantially in the center of the top 26 of the container body 14. Alternatively, the first container aperture 18 can have a different shape and/or can be positioned in a different portion of the container body 14.

Further, as will be described in greater detail below, the second container aperture 20, i.e. the insert aperture, is utilized to assist in the installation and positioning of and/or providing access to certain additional components of the container assembly 10. The second container aperture 20 is positioned within and/or extends through the container body 14. As shown in the embodiment illustrated in FIG. 1, the second container aperture 20 can be substantially rectangle shaped and can be positioned within the top 26 of the container body 14 such that the second container aperture 20 is co-extensive with the first container aperture 18. Alternatively, the second container aperture 20 can have a different shape and/or be positioned in a different portion of the container body 14. For example, in one alternative embodiment, the second container aperture 20 is spaced apart from the first container aperture 18.

Additionally, the size of the second container aperture 20 can vary. For example, in certain embodiments, the size of the second container aperture 20 can be such that it is less than approximately twenty-five percent (25%) of the total surface area of the top 26 of the container body 14. More particularly, in one embodiment, the size of the second container aperture 20 can be between approximately five percent (5%) and ten percent (10%) of the total surface area of the top 26 of the container body 14. For example, in one non-exclusive embodiment, the second container aperture 20 can be substantially rectangle shaped and can be approximately four inches wide by eight inches long radially. Alternatively, the second container aperture 20 can be a different size. For example, the second container aperture 20 can be greater than twenty-five percent (25%) of the total surface area of the top 26 of the container body 14 or less than five percent (5%) of the total surface area of the top 26 of the container body 14.

Further, as illustrated in this embodiment, the second container aperture 20 can extend radially away from the first container aperture 18, i.e. radially away from the center of the top 26 of the container body 14 to the perimeter of the top 26. Moreover, as described in detail below, the second container aperture 20 is sized and shaped so that an oxygenator 230 (illustrated in FIG. 2), an insert retainer assembly 338 (illustrated in FIG. 3), and one or more flavor inserts 440 (illustrated in FIG. 4) can quickly and easily be installed within and/or removed from the container body 14 in modular fashion through the second container aperture 20.

Additionally, the container apertures 18, 20 are uniquely designed to be small enough so that the container apertures 18, 20 do not influence the structural integrity (significantly reduce the strength) of the top 26 of the container body 14. Thus, the design of the container apertures 18, 20 enables multiple containers to be stacked together on their sides without negatively impacting the seal of the container apertures 18, 20 and/or causing the container 12 to leak.

FIG. 2 is a perspective view of a portion of the container assembly 10 illustrated in FIG. 1. In particular, FIG. 2 illustrates that the container assembly 10 further includes an oxygenation assembly 228 that introduces a controlled amount of a fluid, e.g., oxygen, to the liquid 16 (illustrated in FIG. 1) during the aging process. It should be noted that a portion of the side wall 22 has been removed in FIG. 2 so as to enable the viewing of the oxygenation assembly 228 as it is positioned within the container body 14.

Additionally, it should be noted that although the present invention is described herein as utilizing the oxygenation assembly 228 to introduce a controlled amount of oxygen to the liquid 16 during the aging process, the present invention is equally able to utilize the oxygenation assembly 228 to introduce one or more alternative fluids to the liquid 16.

In one embodiment, the oxygenation assembly 228 can have a modular design such that the oxygenation assembly 228 can be positioned within and/or removed from the container body 14 through the second container aperture 20 without removing the top 26 of the container body 14, and without otherwise disassembling the container 12.

The design of the oxygenation assembly 228 can be varied to suit the specific design requirements of the container assembly 10. As illustrated in FIG. 2, the oxygenation assembly 228 includes an oxygenator 230 and an oxygenator mount assembly 232.

The oxygenator 230 can be precisely controlled in order to release oxygen into the liquid 16 at any desired rate and time. This integrated micro-oxygenation release system has been created to simulate the natural breathing of a wood barrel in a non-breathing aging container, like a stainless steel barrel. The specific design of the oxygenator 230 will be described in greater detail below.

In one embodiment, the oxygenator mount assembly 232 includes a lower mount 234 for securing and/or mounting the oxygenator 230 substantially adjacent to the bottom 24 of the container body 14, and an upper mount 236 (illustrated in FIG. 4) for securing and/or mounting the oxygenator 230 substantially adjacent to the top 26 of the container body 14.

As shown in FIG. 2, the lower mount 234 is substantially centrally located along the bottom 24 of the container body 14 and is adapted to receive and retain the oxygenator 230 when the oxygenator 230 is positioned within the container body 14. In certain non-exclusive alternative embodiments, the lower mount 234 can be secured to the bottom 24 of the container body 14 with screws, by welding, or by some other method. Somewhat similarly, the upper mount 232 is substantially centrally located along the top 26 of the container body 14 and is adapted to receive and retain the oxygenator 230 when the oxygenator is positioned within the container body 14. In certain non-exclusive alternative embodiments, the upper mount 232 can be secured to the top 26 of the container body 14 with screws, by welding, or by some other method. Alternatively, the oxygenator mount assembly 232 can have a different design and/or the lower mount 234 and the upper mount 236 can be positioned in different locations relative to the container body 14. In one embodiment, at least one of the mounts 232, 234 includes a bearing (not illustrated) that allows for easy rotation of the oxygenator 230 relative to the container body 14.

In one embodiment, as illustrated in FIG. 2, a portion of the oxygenator 230 can be positioned within and/or extend through the first container aperture 18. With this design, the user is better able to access the oxygenator 230 in order to add or remove oxygen from the oxygenator 230 and to control the release of oxygen into the liquid 16 that is present within the container body 14.

FIG. 3 is a perspective view of a portion of the container assembly 10 illustrated in FIG. 1. In particular, FIG. 3 illustrates that the container assembly 10 further includes an insert retainer assembly 338 for receiving and retaining one or more flavor inserts 440 (illustrated in FIG. 4) as a means to impart a flavor on the liquid 16 (illustrated in FIG. 1) during the aging process. It should be noted that a portion of the side wall 22 has been removed in FIG. 3 so as to enable the viewing of the insert retainer assembly 338 as it is positioned within the container body 14.

In one embodiment, the insert retainer assembly 338 can have a modular design such that the insert retainer assembly 338 can be positioned within and/or removed from the container body 14 through the second container aperture 20 without removing the top 26 of the container body 14, and without otherwise disassembling the container 12.

The design of the insert retainer assembly 338 can be varied to suit the specific design requirements of the container assembly 10. As illustrated in FIG. 3, the insert retainer assembly 338 includes a lower retainer 342 and an upper retainer 344 that cooperate to selectively retain the one or more flavor inserts 440 spaced apart from the container body 14. Alternatively, the insert retainer assembly 338 can have a different design. For example, in one alternative embodiment, the insert retainer assembly 338 can be designed so as to allow the one or more flavor inserts 440 to contact the container body 14 when the flavor inserts 440 are positioned within the container body 14.

As illustrated in this embodiment, the lower retainer 342 can be mounted about the oxygenator 230 near the bottom 24 of the container body 14. Alternatively, the container assembly 10 could include a retainer tube that substantially surrounds the oxygenator 230, and the lower retainer 342 could be mounted about the retainer tube near the bottom 24 of the container body 14. Still alternatively, the lower retainer 342 can be mounted within the container body 14 in a different position and/or in a different manner.

Additionally, in the embodiment illustrated in FIG. 3, the lower retainer 342 includes a plurality of lower retainer arms 346 that extend radially away from the oxygenator 230 toward the side wall 22 of the container body 14. In this embodiment, the lower retainer 342 includes seven lower retainer arms 346 that are substantially evenly spaced about the oxygenator 230. Alternatively, the lower retainer 342 can include more than seven or less than seven lower retainer arms 346, depending on the number of flavor inserts 440 that are desired to be retained within the container body 14.

In one embodiment, the second container aperture 20 is uniquely sized and shaped so that only one lower retainer arm 346 can be positioned within and/or removed from the container body 14 through the second container aperture 20 at any given rotational position of the lower retainer 342. In such embodiment, after each lower retainer arm 346 is positioned within and/or removed from the container body 14 through the second container aperture 20, the lower retainer 342 can be rotated, e.g., via rotation of the oxygenator 230, so that another lower retainer arm 346 can be individually positioned within and/or removed from the container body 14 through the second container aperture 20.

Further, in this embodiment, each lower retainer arm 346 includes a step-like design that defines a plurality of insert openings 348, wherein each insert opening 348 is sized and shaped to selectively receive and retain one of the flavor inserts 440. As illustrated, each lower retainer arm 346 can include five insert openings 348 for selectively receiving and retaining up to five flavor inserts 440. Alternatively, each lower retainer arm 346 can be designed to include more than five or less than five insert openings 348, depending on the number of flavor inserts 440 that are desired to be retained within the container body 14. Additionally, in this embodiment, each of the insert openings 348 is a generally rectangular shaped opening that is slightly larger than the cross-section of the flavor inserts 440. Alternatively, for example, one or more of the insert openings 348 can be another shape, such as a circle, a triangle or an octagon.

Still further, as illustrated, each lower retainer arm 346 can include an arm base 350 that extends downward from and underneath the remainder of the lower retainer arm 346. In particular, the arm base 350 can be selectively coupled to the lower retainer arm 350 near an outer edge of the lower retainer arm 350, i.e. near the edge of the lower retainer arm 350 closest to the side wall 22 of the container body 14. Further, the arm base 350 can be selectively coupled to the outer surface of the oxygenator 230 and/or to an inner edge of the lower retainer arm 350 substantially adjacent to the oxygenator 230. With this design, when the flavor inserts 440 are positioned within the insert openings 348, the flavor inserts 440 are supported at one end by the arm base 350, such that the flavor inserts 440 are maintained spaced apart from the bottom 24 of the container body 14. Alternatively, the lower retainer arms 346 can be designed without the arm base 350, and the flavor inserts 440 can be allowed to contact the bottom 24 of the container body 14 or the flavor inserts 440 can be maintained spaced apart from the bottom 24 of the container body 14 in a different manner.

In one embodiment, each of the lower retainer arms 346 is made of a stainless steel material. Alternatively, each lower retainer arm 346 can be made of another suitable material.
-Just need something else to build. -
varocketry
Site Donor
Site Donor
Posts: 514
Joined: Fri Mar 22, 2013 5:15 pm
Location: somewhere not near Detroit

Pt 2

Post by varocketry »

As illustrated in this embodiment, the upper retainer 344 can be mounted about the oxygenator 230 near the top 26 of the container body 14. Alternatively, the container assembly 10 could include a retainer tube that substantially surrounds the oxygenator 230, and the upper retainer 344 could be mounted about the retainer tube near the top 26 of the container body 14. Still alternatively, the upper retainer 344 can be mounted within the container body 14 in a different position and/or in a different manner.

Additionally, in the embodiment illustrated in FIG. 3, the upper retainer 344 includes a plurality of upper retainer arms 352 that extend radially away from the oxygenator 230 toward the side wall 22 of the container body 14. In this embodiment, the upper retainer 344 includes seven upper retainer arms 352 that are substantially evenly spaced about the oxygenator 230, and that are designed to be substantially vertically aligned with the lower retainer arms 346. Alternatively, the upper retainer 344 can include more than seven or less than seven upper retainer arms 352, depending on the number of flavor inserts 440 that are desired to be retained within the container body 14.

In one embodiment, the second container aperture 20 is uniquely sized and shaped so that only one upper retainer arm 352 can be positioned within and/or removed from the container body 14 through the second container aperture 20 at any given rotational position of the upper retainer 344. In such embodiment, after each upper retainer arm 352 is positioned within and/or removed from the container body 14 through the second container aperture 20, the upper retainer 344 can be rotated, e.g., via rotation of the oxygenator 230, so that another upper retainer arm 352 can be individually positioned within and/or removed from the container body 14 through the second container aperture 20.

Further, in this embodiment, each upper retainer arm 352 includes a step-like design that defines a plurality of insert openings 354, wherein each insert opening 354 is sized and shaped to selectively receive and retain one of the flavor inserts 440. As illustrated, each upper retainer arm 352 can include five insert openings 354 for selectively receiving and retaining up to five flavor inserts 440. Alternatively, each upper retainer arm 352 can be designed to include more than five or less than five insert openings 354, depending on the number of flavor inserts 440 that are desired to be retained within the container body 14. Additionally, in this embodiment, each of the insert openings 354 is a generally rectangular shaped opening that is slightly larger than the cross-section of the flavor inserts 440. Alternatively, for example, one or more of the insert openings 354 can be another shape, such as a circle, a triangle or an octagon.

In one embodiment, each of the upper retainer arms 352 is made of a stainless steel material. Alternatively, each upper retainer arm 352 can be made of another suitable material.

With the present design, a flavor insert 440 can be added to the insert retainer assembly 338 by sliding the flavor insert 440 into one of the insert openings 354 in one of the upper retainer arms 352, into the corresponding insert opening 348 in one of the lower retainer arms 346 and against the arm base 350. In this embodiment, the arm base 350 inhibits further downward movement of the flavor insert 440 relative to the insert retainer assembly 338.

FIG. 4 is a perspective view of a portion of the container assembly 10 illustrated in FIG. 1. In particular, FIG. 4 illustrates that the container assembly 10 includes the one or more flavor inserts 440. As illustrated, each flavor insert 440 can be selectively received and retained within the chamber 14A by the insert retainer assembly 338. In particular, each flavor insert 440 is positioned within and/or extends through one of the insert openings 348 in one of the lower retainer arms 346 and one of the insert openings 354 in one of the upper retainer arms 352.

In the embodiment illustrated in FIG. 4, each flavor insert 440 has a generally rectangular shaped cross-section. Alternatively, for example, one or more of the flavor inserts 440 can have another cross-sectional shape, such as a circular, oval, triangle, or an octagon. In one embodiment, each flavor insert 440 can have a size of approximately three inches wide, twenty-eight inches long and five-sixteenths of an inch thick, although other sizes are equally possible.

With the specific design as disclosed herein above, wherein each retainer 342, 344 includes seven retainer arms 346, 352, and each retainer arm 346, 352 includes five retainer openings 348, 354, the container assembly 10 can hold from zero up to thirty-five flavor inserts 440. Alternatively, with a different design, the container assembly can hold more than thirty-five or less than thirty-five flavor inserts 440.

Additionally, in this embodiment, the insert retainer assembly 338 retains the flavor inserts 440 spaced apart from each other so that almost the entirety of each flavor insert 440 is exposed to the liquid 16 (illustrated in FIG. 1) in the chamber 14A. Further, in one embodiment, the insert retainer assembly 338 retains the flavor inserts 440 in a fashion that allows the flavor inserts 440 to expand and contract.

The ability to impact the flavor of the liquid 16 by inserting different types of flavor inserts 440 into the chamber 14A is a great benefit in creating the finest beverage possible during the aging process. For example, at the beginning of the aging process, ten flavor inserts 440 can be placed in the chamber 14A. The flavor inserts 440 can be a first type of wood or some of the flavor inserts 440 can be of the first type of wood and some of the flavor inserts 440 can be of another type of wood. Subsequently, during the aging process, one or more flavor inserts 440 can be added or removed from the chamber 14A to adjust and influence the aging process. If flavor inserts 440 are added, the flavor inserts 440 can be of the first type of wood or another type of wood.

The one or more flavor inserts 440 impart a flavor on the liquid 16 during the aging process. The number of flavor inserts 440 utilized and the type of flavor inserts 440 utilized can be adjusted to precisely adjust the desired outcome of the liquid 16. With this design, the perfect material and the perfect amount of material for the liquid 16 for extracting flavor during the aging process can be utilized. With the ability to change the number and types of flavor inserts 440 utilized during the aging process, the present invention provides great flexibility in the timing and the flavor development of the liquid 16 during the aging process.

As non-exclusive examples, one or more of the flavor inserts 440 can be made of different species of wood, such as white oak, red oak, redwood, douglas fir, maple, birch, hickory, and/or any combination thereof.

Additionally, as illustrated in FIG. 4, the container assembly 10 further includes an access door 456 that is coupled to the top 26 of the container body 14 and that is adapted to selectively close and seal the insert aperture 20. In different non-exclusive embodiments, the access door 456 can be hingably and/or removably coupled to the top 26 of the container body 14. As the access door is designed to completely cover and seal the insert aperture 20, in certain embodiments, the size of the access door 456 can be such that it is less than approximately twenty-five percent (25%) of the total surface area of the top 26 of the container body 14. More particularly, in one embodiment, the size of the access door 456 can be between approximately five percent (5%) and ten percent (10%) of the total surface area of the top 26 of the container body 14. Alternatively, the access door 456 can be a different size and/or the access door 456 can be coupled to the top 26 of the container body 14 in another manner. For example, the access door 456 can be greater than twenty-five percent (25%) of the total surface area of the top 26 of the container body 14 or less than five percent (5%) of the total surface area of the top 26 of the container body 14.

Through the access door 456 and/or through the insert aperture 20, the flavor inserts 440 can be easily added, removed or replaced from the insert retainer assembly 338 while the liquid 16 is in the chamber 14A and while the insert retainer assembly 338 is positioned within the container body 14. More specifically, the insert aperture 20 and the access door 456 are uniquely sized and shaped so that only a single row of flavor inserts 440 can be added or removed from the container body 14 through the insert aperture 20 and/or the access door 456 at any given rotational position of the retainer insert assembly 338. For example, in one embodiment, only a single row of flavor inserts 440 can be added or removed from a single lower retainer arm 346 and a single upper retainer arm 352 through the insert aperture 20 and/or the access door 456 at any given rotational position of the retainer insert assembly 338. Subsequently, the insert retainer assembly 338 can be rotated so that subsequent rows of the flavor inserts 440 can be individually added or removed from the container body 14 through the insert aperture 20 and/or the access door 456. With this design, the flavor inserts 440 can be removed, renewed, changed, added to or decreased from during the aging process, while the liquid 16 is still in the chamber 14A. The flexibility to change, add or remove the flavor inserts 440 continues through the complete aging process right up to the bottling. This process can be repeated as many times as necessary to extract the optimum flavor and structure from the flavor inserts 440.

In one embodiment, the container body 14 and the access door 456 are made of materials that impart substantially no flavor on the liquid 16 and that are substantially liquid impervious. For example, in one embodiment, one or both of the container body 14 and the access door 456 are made of stainless steel or aluminum. With this design, the container body 14 and the access door 456 can be easily cleaned and reused with many different liquids 16. Moreover, having the ability to quickly and easily change the flavor inserts 440 allows the user to easily convert his barrel inventory from one type of wood flavoring component to another, even adding more wood or subtracting undesirable flavoring components, without having to purchase entirely new containers. Thus, the present invention provides many economic, environmental and manufacturing advantages over the older more traditional aging equipment. For example, once the initial investment in the container 12 is made, the cost to achieve the highest barrel quality is only a function of the cost of the flavor inserts 440. The cost to replace the flavor inserts 440 inside the container 12 with flavor inserts 440 of comparable wood and quality can be less than approximately 10% the cost of a similar new wood barrel. As an example, a typical high end barrel used for only the finest wines is typically made from French oak and can cost approximately $900 to $1,000. To achieve the same French oak surface area ratio to volume of liquid utilizing flavor inserts 440 with the present design, it can cost between approximately $30 and $40. Further, the useful life of such a wood barrel is typically only one or two vintages at which point the wood in contact with the liquid loses the ability to impart flavors on the liquid. Accordingly, the present invention allows a user with limited financial resources the opportunity to use high end wood flavoring components every vintage with totally flexible barrel inventory.

Additionally, as noted above, the use of the access door 456 as provided herein, allows the insert retainer assembly 338 to be installed inside the container body 14 through the insert aperture 20.

Further, in the embodiment illustrated in FIG. 4, the container assembly 10 also includes a rotator 458 that is coupled to the oxygenator 230 for selectively rotating the oxygenator 230 (illustrated in FIG. 2), the insert retainer assembly 338 and the flavor inserts 440 within the container body 14, i.e. within the chamber 14A. More specifically, in this embodiment, the rotator 458 can be used to selectively move and/or rotate the oxygenator 230, the insert retainer assembly 338 and one or more of the flavor inserts 440 relative to the rest of the container assembly 10. As illustrated, the rotator 458 is centrally located relative to the top 26 of the container body 14 substantially adjacent to the upper mount 236 of the oxygenator mount assembly 232. Additionally, the rotator 458 is designed to completely cover and seal the rotator aperture 18. Alternatively, the rotator 458 can be positioned in another location relative to the container body 14.

With the present design, the rotator 458 can be used to selective rotate the oxygenator 230, the insert retainer assembly 338 and the flavor inserts 440 without opening the chamber 14A, with the chamber 14A sealed and with the chamber 14A full of liquid 16.

In one embodiment, the rotator 458 can be a knob that can be manually and selectively rotated by the user. Alternatively, the rotator 458 can include a handle or some other means to enable the user to manually and selectively rotate the rotator 458. Additionally and/or alternatively, the rotator 458 can include a motor (not illustrated) that enables the user to automatically rotate the oxygenator 230 and the insert retainer assembly 338 and the flavor inserts 440 within the chamber 14A.

The purpose of the rotation of the insert retainer assembly 338 is to enable the user to position the upper retainer arms 352 and the lower retainer arms 346 so that the flavor inserts 440 can be inserted into or removed from the chamber 14A via the access door 456. Additionally, the flavor inserts 440 can be inserted or removed in this manner, as desired, when the chamber 14A is full of liquid 16 or when the chamber 14A contains no liquid.

Further, the size and positioning of the access door 456 in combination with the ability to rotate the oxygenator 230 with the rotator 458 enables the user to install the insert retainer assembly 338 through the access door 456 without removing the top 26 of the container body 14. Moreover, the features of the container assembly 10, as described in detail herein, enable the oxygenator 230, the insert retainer assembly 338 and the one or more flavor inserts 440 to be installed through the access door 456, i.e. through the insert aperture 20, without otherwise disassembling the container 12.

An additional benefit to utilizing the rotator 458 to rotate the oxygenator 230, the insert retainer assembly 338 and the flavor inserts 440 is that this operation effectively stirs the liquid 16 that is in the chamber 14A. This operation is easy to perform while the container 12 is in any orientation, horizontal, vertical or anywhere in between. This stirring process is referred to as "stirring of the lees", and it is required frequently during the aging of wine and spirits. For example, some winemakers stir the lees every 2 to 4 weeks. Moreover, the present stirring process as disclosed herein is much simpler and easier than traditional methods for stirring the lees, and it can do a much more thorough and consistent job of stirring than current traditional methods.

FIG. 5 is a partially exploded perspective view of a portion of the container assembly 10 illustrated in FIG. 1. In particular, FIG. 5 illustrates a lower retainer arm 346, an upper retainer arm 352, and five flavor inserts 440 that can be easily installed in modular fashion within the chamber 14A through the access door 456.

Additionally, FIG. 5 illustrates that in one embodiment, each upper retainer arm 352 can further include an arm lock 560 that extends upward from and over top of the remainder of the upper retainer arm 352. In particular, the arm lock 560 can be selectively coupled to the upper retainer arm 352 near an outer edge of the upper retainer arm 352, i.e. near the edge of the upper retainer arm 352 closest to the side wall 22 of the container body 14. Further, the arm lock 560 can be selectively coupled to the outer surface of the oxygenator 230 and/or to an inner edge of the upper retainer arm 352 substantially adjacent to the oxygenator 230. With this design, when the flavor inserts 440 are positioned within the insert openings 354, the flavor inserts 440 are inhibited from moving (e.g., floating) upward relative to the container body 14. Moreover, this design enables the flavor inserts 440 to be maintained spaced apart from the top 26 of the container body 14. Alternatively, the arm lock 560 can have a different design. Still alternatively, the upper retainer arms 352 can be designed without the arm lock 560, and the flavor inserts 440 can be allowed to contact the top 26 of the container body 14 or the flavor inserts 440 can be maintained spaced apart from the top 26 of the container body 14 in a different manner.

FIG. 6A is a partially exploded perspective view of an embodiment of an oxygenator 630 having features of the present invention. As provided above, the oxygenator 630 can be precisely controlled to enable the user, e.g. the wine maker, to release oxygen, or other fluid, into the liquid 16 (illustrated in FIG. 1) at any desired rate and time. Additionally, by positioning the oxygenator 630 substantially within the chamber 14A, as illustrated in FIG. 2, the oxygenator 630 provides a practical and convenient source for introducing oxygen into the liquid 16 (illustrated in FIG. 1) that is contained within the chamber 14A.

The design of the oxygenator 630 can be varied to suit the specific design requirements of the container assembly 10 (illustrated in FIG. 1). As described herein, the integrated system of the oxygenator 630 has been created to simulate the natural breathing of a wood barrel in a non-breathing aging container, such as a stainless steel container. Additionally, the oxygenator 630 creates the aging qualities afforded by a traditional wood barrel, but can utilize stainless steel containers, which are more economical and have a longer service life.

As illustrated in FIG. 6A, the oxygenator 630 includes a first tank 662, a second tank 664, a plurality of caps 666, a first valve 668, a second valve 670, and one or more diffusers 672.

The first tank 662 is a high pressure storage tank which is adapted for storing at least a majority of the oxygen that can be released over time as desired into the chamber 14A. As such, the first tank 662 can function as and/or be referred to as a fluid source, e.g., an oxygen source. In the embodiment illustrated in FIG. 6A, the first tank 662 is a long slender tube with a substantially circular cross-sectional shape. Alternatively, the first tank 662 can have a different design. For example, in certain non-exclusive alternative embodiments, the first tank 662 can have a substantially square, rectangle, triangle or oval cross-sectional shape. As illustrated above in FIG. 2, the first tank 662 can be conveniently positioned within the chamber 14A, such that the first tank 662 extends generally downward from the top 26 (illustrated in FIG. 2) of the container body 14 (illustrated in FIG. 2) most of the way toward the bottom 24 (illustrated in FIG. 2) of the container body 14.

In certain embodiments, the first tank 662 can be designed to hold a certain volume of oxygen that can be compressed at a certain pressure. For example, in one embodiment, the first tank 662 can be designed to hold approximately 0.5 cubic feet of oxygen that is compressed at approximately two hundred pounds per square inch (psi). In another embodiment, the first tank 662 can be designed to hold approximately five cubic feet of oxygen that is compressed at approximately three hundred psi. Alternatively, the first tank 662 can be designed to hold different volumes of oxygen that can be compressed to different extents that those specifically disclosed herein. For example, the first tank 662 can be designed to hold more than five or less than 0.5 cubic feet of compressed oxygen, and/or the oxygen can be compressed to greater than approximately three hundred psi or less than approximately two hundred psi, depending on the requirements of the container assembly 10.

In this embodiment, the second tank 664 is integrated with and/or coupled to the first tank 662. Moreover, the second tank 664 is in fluid communication with the first tank 662. The second tank 664 is used as a regulated dispersion oxygen tank, which receives oxygen from the first tank 662, i.e. the oxygen source, and which releases oxygen into the liquid 16 through the diffusers 672. As such, the second tank 664 functions essentially as a conduit through which the oxygen can be introduced into the liquid 16 via the one or more diffusers 672. Additionally, in one embodiment, the second tank 664 can also store a relatively small portion of the oxygen that can be released over time as desired into the chamber 14A.

In the embodiment illustrated in FIG. 6A, the second tank 664 is a short slender tube with a substantially circular cross-sectional shape. Alternatively, the second tank 664 can have a different design. For example, in certain non-exclusive alternative embodiments, the second tank 664 can have a substantially square, rectangle, triangle or oval cross-sectional shape. Further, in the embodiment illustrated in FIG. 6A, the length of the second tank 664 is approximately one-sixth the length of the first tank 662. Alternatively, the relative lengths of the second tank 664 and the first tank 662 can be different. For example, the second tank 664 can have a length that is greater than or less than one-sixth the length of the first tank 662.

It should be noted that the use of the terms "first tank" and "second tank" is merely for ease of discussion, and either tank can be referred to as the first tank or the second tank.

In the embodiment illustrated in FIG. 6A, the plurality of caps 666 includes a first cap 666A, a second cap 666B and a third cap 666C.

The first cap 666A seals an end of the first tank 662 positioned away from the second tank 664. In particular, the first cap 666A seals the end of the first tank 662 that is positioned substantially adjacent to the top 26 of the container body 14 when the oxygenator 630 is positioned within the chamber 14A.

The second cap 666B seals the connection between the first tank 662 and the second tank 664.

The third cap 666C seals an end of the second tank 664 positioned away from the first tank 662. In particular, the third cap 666C seals the end of the second tank 664 that is positioned substantially adjacent to the bottom 24 of the container body 14 when the oxygenator 630 is positioned within the chamber 14A.

It should be noted that the use of the terms "first cap", "second cap" and "third cap" is merely for ease of discussion, and any of the caps can be referred to as the first cap, the second cap or the third cap.

The first valve 668 is positioned substantially adjacent to the first cap 666A. The first valve 668 provides an access port to enable the user to quickly and easily introduce oxygen into and/or remove oxygen from the first tank 662. Stated another way, the first valve 668 enables the user to store a specific volume and pressure of oxygen within the first tank 662, such that the first tank 662 can function as the oxygen source for introducing the oxygen into the liquid 16 during the aging process.

The second valve 670 is positioned substantially between the first tank 662 and the second tank 664 and substantially adjacent to the second cap 666B. The second valve 670 can be a pressure valve that regulates the volume and rate of the oxygen that is being passed from the first tank 662, i.e. the oxygen source, to the second tank 664 so that a desired amount of the oxygen can be introduced into the liquid 16 at a desired rate during the aging process. In one embodiment, the second valve 670 functions at a predetermined setting during the aging process so as to best simulate the natural breathing of a wood barrel in a non-breathing aging container. Alternatively, in one embodiment, the oxygenator 630 can include a control system (not illustrated) with which the second valve 670 can be controlled so as to control and/or adjust the amount and rate of the oxygen that is being introduced into the liquid 16.

It should be noted that the use of the terms "first valve" and "second valve" is merely for ease of discussion, and either valve can be referred to as the first valve or the second valve.

As provided herein, the one or more diffusers 672 are in fluid communication with the second tank 664 and, as such, are adapted to controllably release oxygen from the second tank 664 into the liquid 16. More particularly, the diffusers 672 function essentially as a conduit through which the oxygen that is passed from the first tank 662 to the second tank 664 can be controllably released into the liquid 16 during the aging process. As illustrated, each of the one or more diffusers 672 can be coupled to the second tank 664 via a diffuser aperture 672A. Alternatively, the one or more diffusers 672 can be coupled to the second tank 664 in a different manner. In this embodiment, the one or more diffusers 672 are positioned so as to extend laterally or radially away from the second tank 664. With this design, the diffusers 672 are able to disperse the oxygen substantially equally throughout the liquid 16 during the aging process.

In one alternative embodiment, the oxygenator 630 can include one or more diffuser valves (not illustrated) that can be utilized to individually and independently control the oxygen that is being introduced into the liquid through each of the diffusers 672.

Further, as illustrated in FIG. 6A, a pair of mounting rings 676 are positioned about the oxygenator 630 to provide points at which the lower retainer 342 (illustrated in FIG. 3) and the upper retainer 344 (illustrated in FIG. 3) can be mounted about the oxygenator 630. In particular, a lower mounting ring 676L is mounted about the oxygenator 630 substantially adjacent to the second tank 664 to provide a point at which the lower retainer 342 can be mounted about the oxygenator 630. Additionally, an upper mounting ring 676U is mounted about the oxygenator 630 near the end of the first tank 662 that is positioned away from the second tank 664 to provide a point at which the upper retainer 344 can be mounted about the oxygenator 630.

FIG. 6B is a top view of the oxygenator 630 illustrated in FIG. 6A. In particular, FIG. 6B illustrates that this embodiment of the oxygenator 630 includes seven diffusers 672 that extend radially outward away from the remainder of the oxygenator 630 and that are substantially evenly spaced about the oxygenator 630, i.e. about the second tank 664 (illustrated in FIG. 6A) of the oxygenator 630. Alternatively, the oxygenator 630 can be designed to include greater than seven or less than seven diffusers 672.

Referring back to FIG. 3, each of the diffusers 672 is positioned such that the diffuser 672 is substantially centrally located between adjacent lower retainer arms 346. Alternatively, the diffusers 672 and the lower retainer arms 346 can have a different positional relationship relative to one another.

FIG. 6C is a side view of the oxygenator 630 illustrated in FIG. 6A. In particular, FIG. 6C illustrates the oxygenator 630 in a fully assembled condition such that the oxygenator 630 can be quickly and easily positioned within the container body 14 (illustrated in FIG. 1), i.e. the chamber 14A (illustrated in FIG. 1), in order to enable the user to effectively control the introduction of oxygen into the liquid 16 (illustrated in FIG. 1) that is being aged within the container 12 (illustrated in FIG. 1). Additionally, as shown in FIG. 6C, the first valve 668 can be easily accessed by the user in order to quickly and easily introduce oxygen into and/or remove oxygen from the first tank 662 while the oxygenator 630 is positioned within the container 12.

FIG. 7A is a partially exploded perspective view of another embodiment of an oxygenator 730 having features of the present invention. The design of the oxygenator 730 is somewhat similar to the oxygenator 630 illustrated and described above in relation to FIG. 6A. For example, in the embodiment illustrated in FIG. 7A, the oxygenator 730 includes a first tank 762, a second tank 764, a first cap 766A, a third cap 766C, a first valve 768, a second valve 770, and one or more diffusers 772 (illustrated in FIG. 7B) that are substantially similar to the first tank 662, the second tank 664, the first cap 666A, the third cap 666C, the first valve 668, the second valve 670, and the one or more diffusers 672 illustrated and described above in relation to FIG. 6A. Accordingly, a detailed description of such elements will not be repeated. Additionally, in the embodiment illustrated in FIG. 7A, the oxygenator 730 further includes a connector 780.

As in the previous embodiment, the first tank 762, i.e. the fluid source or oxygen source, is a high pressure storage tank which is adapted for storing at least a majority of the fluid, e.g., oxygen, that can be released over time as desired into the chamber 14A (illustrated in FIG. 1). Similar to the previous embodiment, the first tank 762 is a long slender tube with a substantially circular cross-sectional shape that is designed to hold a certain volume of oxygen that can be compressed at a certain pressure. In this embodiment, the first tank 762 can be conveniently positioned within the chamber 14A, such that the first tank 762 extends generally downward from the top 26 (illustrated in FIG. 2) of the container body 14 (illustrated in FIG. 2) approximately half way toward the bottom 24 (illustrated in FIG. 2) of the container body 14.

Additionally, as in the previous embodiment, the second tank 764 is integrated with and/or coupled to the first tank 762, and the second tank 764 is in fluid communication with the first tank 762. Further, the second tank 764 is used as a regulated dispersion oxygen tank or conduit, which receives oxygen from the first tank 762, i.e. the oxygen source, and which releases oxygen into the liquid 16 through the diffusers. In the embodiment illustrated in FIG. 7A, the second tank 764 is a long slender tube with a substantially circular cross-sectional shape, wherein the length of the second tank 664 is approximately the same as the length of the first tank 762. Alternatively, the lengths of the second tank 764 and the first tank 762 can be different. Additionally, in this embodiment, the second tank 764 can function as a second and/or backup fluid source.

The connector 780 is positioned substantially between and connects the first tank 762 and the second tank 764. Further, the connector 780 seals the connection between the first tank 762 and the second tank 764. As illustrated in FIG. 7A, the connector 780 includes a connector aperture 782 that extends transversely through the connector 780. The connector aperture 782 is adapted to receive a pipe or other conduit (not illustrated) that can be used for filling the liquid 16 (illustrated in FIG. 1) into the chamber 14A, pumping or otherwise removing the liquid 16 from the chamber 14A, or racking of the liquid 16 within the chamber 14A. More particularly, the connector aperture 782 is aligned with the bunghole (not illustrated) that extends through the container body 14, such that the connector aperture 782 and the bunghole cooperate to receive the pipe or conduit that can be used for filling the liquid 16 into the chamber 14A, pumping or otherwise removing the liquid 16 from the chamber 14A, or racking of the liquid 16 within the chamber 14A.

FIG. 7B is a side view of the oxygenator 730 illustrated in FIG. 7A. In particular, FIG. 7B illustrates the oxygenator 730 in a fully assembled condition such that the oxygenator 730 can be quickly and easily positioned within the container body 14 (illustrated in FIG. 1), i.e. the chamber 14A (illustrated in FIG. 1), in order to enable the user to effectively control the introduction of oxygen into the liquid 16 (illustrated in FIG. 1) that is being aged within the container 12 (illustrated in FIG. 1).

FIG. 8 is a simplified flow chart that outlines an embodiment of a process for installing an access door, an oxygenator, and an insert retainer assembly in a container. In different embodiments, the access door and the insert retainer assembly can be installed in a stainless steel container or in an existing wood barrel. It should be noted that the installation of the access door, the oxygenator, and the insert retainer assembly in an existing wood barrel is unique in that it can be accomplished with ease onsite at the winery if desired without disassembling the barrel.

Initially, in step 801, one or more container apertures are cut into the container. In particular, a container aperture can be cut into the container that is sized and shaped to accommodate a portion of the oxygenator and the rotator, and/or a container aperture can be cut into the container that is sized and shaped to fit the access door components. In one embodiment, the container aperture that is designed to fit the access door components is substantially rectangular and is approximately four inches by twelve inches in size. Next, in step 803, the access door main body is thru bolted onto the container with a bottom flange (inside the container) and a top flange (outside the container), thereby creating a strong structural liquid tight seal. Subsequently, in step 805, the access door is assembled, such that the access door is coupled to the container. For example, in different non-exclusive embodiments, the access door can be hingably and/or removably coupled to the container.

Next, in step 807, a lower mount is installed through the container aperture, i.e. through the access door, and the lower mount is attached to the interior surface on the bottom of the container. Then, in step 809, the oxygenator, which provides a pivot point for the rotator, is inserted down through the container aperture until it reaches the bottom of the container, and the oxygenator is coupled to the lower mount. Subsequently, in step 811, the lower retainer arms and the upper retainer arms are mounted about the oxygenator. The retainer arms are easily mounted about the oxygenator by rotating the oxygenator and timing the retainer arms in relationship to the access door opening, i.e. to the container aperture. This step is repeated until all of the lower retainer arms and the upper retainer arms are mounted about the oxygenator.

Next, in step 813, the desired number and type of flavor inserts are inserted through the access door and consecutively into the upper retainer arms and the lower retainer arms. The flavor inserts are now retained securely within the container by the upper retainer arms and the lower retainer arms. Finally, in step 815, the access door is closed securely in a liquid tight fashion and the container is ready for the liquid, e.g., the wine or spirit, to be introduced into the container in a traditional fashion through a bunghole.

It should be noted that some of the steps as described herein can be combined or eliminated and/or the order of some of the steps can be altered without otherwise changing the purpose and/or results of the above-recited process.

While a number of exemplary aspects and embodiments of a container assembly 10 have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
-Just need something else to build. -
User avatar
SandyCrack
Novice
Posts: 27
Joined: Sun Nov 08, 2015 5:55 pm

Re: 20 years of aging in 6 days

Post by SandyCrack »

kiwi Bruce wrote:As some of us start to get a little long in the tooth here Sandy, and we would love to fool ourselves that we would still be here in twenty, thirty or even fifty years. Letting great kegs of our hobby age along with us. The truth is ...speed is everything, if we want to enjoy what we make, while we are still standing on the green side of the sod.
S-Cackalacky wrote:+1 KB. Well said. Many of these young sons ain't seein' the big neon mortality sign flashing just yet. I consider myself a good father, but I ain't looking to build a whiskey inheritance for the younguns.
Not being disrespectful, but I been brewin all things "akaholik" since the early 80's, just recently got to readin and studying this end of the pool 5 or so years ago, jumped in a year ago or so....
You do the math... lol!

My house is CHOCK FULL of projects and runs of sweet bottled wonderfulness of my own making from up to 6 years ago...

I really hope my kids enjoy their wine, whiskey inheritance! cuz thats ALL they are gettin!
User avatar
kiwi Bruce
Distiller
Posts: 2324
Joined: Mon Apr 23, 2012 12:38 pm
Location: Transplanted Kiwi living in the States

Re: 20 years of aging in 6 days

Post by kiwi Bruce »

SandyCrack wrote:Not being disrespectful,
Your not being disrespectful.....this is iron sharpening iron here. I think we all have a lot of ideas to offer each other and we get to look at our own circumstances and ideas through the prism of someone else's shot glass. So you think attempting to speed mature your spirit is not for you, S-C and I disagree, because we have both had some success at doing this in the past. What we are attempting to do on this and simpler posts here on HD, is understand is how to replicate natures process, simply because we want to. Not a need just a want, a quest for knowledge, if you will, and tasty spirits. Always most important.
Getting hung up all day on smiles
User avatar
S-Cackalacky
retired
Posts: 5990
Joined: Fri Feb 08, 2013 4:35 pm
Location: Virginia, USA

Re: 20 years of aging in 6 days

Post by S-Cackalacky »

I'm not such a traditionalist that I won't at least try something new. There are a lot of threads in the forums that go against the grain of tradition, but I don't see disrespect in expressing that difference of opinion. The only customer we have to please is ourselves, so why not experiment and look for new avenues. We're probably in the best position to do that because we have no one to answer to but ourselves. There have been many groundbreaking developments come out of these forums and they only reach fruition from the back and forth between us. Hope that makes some kind of sense.
Every new member should read this before doing anything else:
User avatar
kiwi Bruce
Distiller
Posts: 2324
Joined: Mon Apr 23, 2012 12:38 pm
Location: Transplanted Kiwi living in the States

Re: 20 years of aging in 6 days

Post by kiwi Bruce »

+1 S-C
Getting hung up all day on smiles
thumper123
Swill Maker
Posts: 150
Joined: Sun Mar 10, 2013 8:16 am

Re: 20 years of aging in 6 days

Post by thumper123 »

All this info is just what I've been thinking about for a long time. I presently have a little bourbon that is around 25 years old. I bring it out for very special occasions, and yes, it's delightful. But in most cases with oak aging I've found the aging process to be a crap shoot. I've been disappointed with some of my 5year old stuff and been amazed at some two year old stuff. One constant is that, in my limited experience, aging ALWAYS makes a difference, but I'm an old man and time is definitely a big factor. All this new technology fits right in with my game plan. I'm hoping to see more research and developement on this.
User avatar
SandyCrack
Novice
Posts: 27
Joined: Sun Nov 08, 2015 5:55 pm

Re: 20 years of aging in 6 days

Post by SandyCrack »

kiwi Bruce wrote:
SandyCrack wrote:Not being disrespectful,
Your not being disrespectful.....this is iron sharpening iron here. I think we all have a lot of ideas to offer each other and we get to look at our own circumstances and ideas through the prism of someone else's shot glass. So you think attempting to speed mature your spirit is not for you, S-C and I disagree, because we have both had some success at doing this in the past. What we are attempting to do on this and simpler posts here on HD, is understand is how to replicate natures process, simply because we want to. Not a need just a want, a quest for knowledge, if you will, and tasty spirits. Always most important.
Agreed!

I guess I just have found that it all depends upon how much of your time and sweat you are willing to spend....

In a nutshell, there is no free lunch, you either do it the natural way (taking as many shortcuts as possible), or pay with equipment, chemicals, and attention.... either way the job gets done I suppose.
I am addicted to sampling over time, I like to taste the changes, determine when to add this, when to do that.... its like a big liquid puzzle to me.
And when you get it right, with nothing more than what you have, and the product is better than ANYTHING you can buy.....
That just make me GRIN from ear to ear! :D
User avatar
SandyCrack
Novice
Posts: 27
Joined: Sun Nov 08, 2015 5:55 pm

Re: 20 years of aging in 6 days

Post by SandyCrack »

S-Cackalacky wrote:I'm not such a traditionalist that I won't at least try something new. There are a lot of threads in the forums that go against the grain of tradition, but I don't see disrespect in expressing that difference of opinion. The only customer we have to please is ourselves, so why not experiment and look for new avenues. We're probably in the best position to do that because we have no one to answer to but ourselves. There have been many groundbreaking developments come out of these forums and they only reach fruition from the back and forth between us. Hope that makes some kind of sense.
I am no traditionalist by any means.
My, learned over trail and error, glass, wood, oxygenate by shaking the bejeebus out of it, method was developed as a way to circumvent years of aging in large barrels. I am fascinated by this whole effort to employ a reactor, and other techniques to approximate an intrinsic mixture of a compound, but also find the entire process to be somewhat like getting laid without getting kissed, if you know what I mean?
The beauty of the technical aspects, in chemistry, physics, and the equipment necessary to complete the process are certainly sexy, but there is so much to be said, and experienced with working with the traditional, or pseudotraditional methods...

And let me be the first to state that when a ground breaking techique is discovered that can be effectively, efficiently, and cheaply employed, I am johnny on the spot to integrate that technique.
Hell, that is why we all do what we do, because we can! (and we can on the cheap).

So I guess what I am trying to stress is, since we are the only customers we are aiming to please, try not to miss what brought you to the hobby in the first place.... a stellar handcrafted drink, and the process of making it!
User avatar
S-Cackalacky
retired
Posts: 5990
Joined: Fri Feb 08, 2013 4:35 pm
Location: Virginia, USA

Re: 20 years of aging in 6 days

Post by S-Cackalacky »

Necessity is the mother of invention - in my case, old age.
Every new member should read this before doing anything else:
User avatar
kiwi Bruce
Distiller
Posts: 2324
Joined: Mon Apr 23, 2012 12:38 pm
Location: Transplanted Kiwi living in the States

Re: 20 years of aging in 6 days

Post by kiwi Bruce »

I thought Miss Demeanor was Inventions mother, or this that only in the States?
Getting hung up all day on smiles
User avatar
NZChris
Master of Distillation
Posts: 13062
Joined: Tue Apr 23, 2013 2:42 am
Location: New Zealand

Re: 20 years of aging in 6 days

Post by NZChris »

SandyCrack wrote:I guess I just have to ask myself why someone would want to "Hurry up" the natural process of aging?
Preview:
If you are making a product that is new to you, you can get a fair idea of what you have without having to wait a couple of years. My reactor does 1.5l, only a fraction of the total run.

Saving your aged likker:
If you've been a bit slack keeping your stocks up and are not wanting to break out your finest aged likker yet, you can chuck some white dog and chips in a reactor and knock out a quickie to keep your filthy mitts off the good stuff.
User avatar
SandyCrack
Novice
Posts: 27
Joined: Sun Nov 08, 2015 5:55 pm

Re: 20 years of aging in 6 days

Post by SandyCrack »

NZChris wrote:
SandyCrack wrote:I guess I just have to ask myself why someone would want to "Hurry up" the natural process of aging?
Preview:
If you are making a product that is new to you, you can get a fair idea of what you have without having to wait a couple of years. My reactor does 1.5l, only a fraction of the total run.

Saving your aged likker:
If you've been a bit slack keeping your stocks up and are not wanting to break out your finest aged likker yet, you can chuck some white dog and chips in a reactor and knock out a quickie to keep your filthy mitts off the good stuff.
Seems reasonable to me!

I'll stick to the methods I have learned for now.
A clever distiller can get around most any problem for nary a nickel, and the wisest know the best simply cannot be hurried along....
User avatar
NZChris
Master of Distillation
Posts: 13062
Joined: Tue Apr 23, 2013 2:42 am
Location: New Zealand

Re: 20 years of aging in 6 days

Post by NZChris »

It's only as expensive as you make it. My reactor is knocked up mostly out of what was already in my shed. The elements are the most expensive part and they are from hair straighteners bought in a charity shop for a few dollars, the controller is one of many and gets used for various tasks. It's my least expensive item of distilling equipment and cost less than I would spend on most ferments.

I could just carry on doing the same old stuff I've been doing for thirty years, or I could exercise some brain cells and try out something new. The latter sounds more interesting to me. My next trial is corn likker on untoasted, charred white oak to compare with the same oak toasted.
Post Reply